Skip to main content
Log in

Walnut-inspired microsized porous silicon/graphene core–shell composites for high-performance lithium-ion battery anodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silicon is considered an exceptionally promising alternative to the most commonly used material, graphite, as an anode for next-generation lithium-ion batteries, as it has high energy density owing to its high theoretical capacity and abundant storage. Here, microsized walnut-like porous silicon/reduced graphene oxide (P-Si/rGO) core–shell composites are successfully prepared via in situ reduction followed by a dealloying process. The composites show specific capacities of more than 2,100 mAh·g−1 at a current density of 1,000 mA·g−1, 1,600 mAh·g−1 at 2,000 mA·g−1, 1,500 mAh·g−1 at 3,000 mA·g−1, 1,200 mAh·g−1 at 4,000 mA·g−1, and 950 mAh·g−1 at 5,000 mA·g−1, and maintain a value of 1,258 mAh·g−1 after 300 cycles at a current density of 1,000 mA·g−1. Their excellent rate performance and cycling stability can be attributed to the unique structural design: 1) The graphene shell dramatically improves the conductivity and stabilizes the solid–electrolyte interface layers; 2) the inner porous structure supplies sufficient space for silicon expansion; 3) the nanostructure of silicon can prevent the pulverization resulting from volume expansion stress. Notably, this in situ reduction method can be applied as a universal formula to coat graphene on almost all types of metals and alloys of various sizes, shapes, and compositions without adding any reagents to afford energy storage materials, graphene-based catalytic materials, graphene-enhanced composites, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seo, M. H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 2011, 4, 425–428.

    Article  Google Scholar 

  2. Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. A nanostructured Sn–C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 2008, 20, 3169–3175.

    Article  Google Scholar 

  3. Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphenepure- sulfur sandwich structure for ultrafast, long-life lithiumsulfur batteries. Adv. Mater. 2014, 26, 625–631.

    Article  Google Scholar 

  4. Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

    Article  Google Scholar 

  5. Jansen, A. N.; Kahaian, A. J.; Kepler, K. D.; Nelson, P. A.; Amine, K.; Dees, D. W.; Vissers, D. R.; Thackeray, M. M. Development of a high-power lithium-ion battery. J. Power Sources 1999, 81–82, 902–905.

    Article  Google Scholar 

  6. Wang, W.; Ruiz, I.; Ahmed, K.; Bay, H. H.; George, A. S.; Wang, J.; Butler, J.; Ozkan, M.; Ozkan, C. S. Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes. Small 2014, 10, 3389–3396.

    Article  Google Scholar 

  7. Liu, N.; Hu, L. B.; McDowell, M. T.; Jackson, A.; Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 2011, 5, 6487–6493.

    Article  Google Scholar 

  8. Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.

    Article  Google Scholar 

  9. Du, F. H.; Bo, L.; Wei, F.; Xiong, Y. J.; Wang, K. X.; Chen, J. S. Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability. Adv. Mater. 2014, 26, 6145–6150.

    Article  Google Scholar 

  10. Chen, Y.; Liu, L. F.; Xiong, J.; Yang, T. Z.; Qin, Y.; Yan, C. L. Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv. Funct. Mater. 2015, 25, 6701–6709.

    Article  Google Scholar 

  11. Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181.

    Article  Google Scholar 

  12. Lv, Q. L.; Liu, Y.; Ma, T. Y.; Zhu, W. T.; Qiu, X. P. Hollow structured silicon anodes with stabilized solid electrolyte interphase film for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 23501–23506.

    Article  Google Scholar 

  13. Wang, C.; Wu, H.; Chen, Z.; Mcdowell, M. T.; Cui, Y.; Bao, Z. N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

    Article  Google Scholar 

  14. Zhao, H.; Du, A.; Ling, M.; Battaglia, V.; Liu, G. Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application. Electrochim. Acta 2016, 209, 159–162.

    Article  Google Scholar 

  15. Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75–79.

    Article  Google Scholar 

  16. Leung, K.; Rempe, S. B.; Foster, M. E.; Ma, Y. G.; Martinez del la Hoz, J. M.; Sai, N.; Balbuena, P. B. Modeling electrochemical decomposition of fluoroethylene carbonate on silicon anode surfaces in lithium ion batteries. J. Electrochem. Soc. 2014, 161, A213–A221.

    Article  Google Scholar 

  17. Qiao, L.; Sun, X. L.; Yang, Z. B.; Wang, X. H.; Wang, Q.; He, D. Y. Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries. Carbon 2013, 54, 29–35.

    Article  Google Scholar 

  18. Ng, S. H.; Wang, J. Z.; Wexler, D.; Chew, S. Y.; Liu, H. K. Amorphous carbon-coated silicon nanocomposites: A lowtemperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J. Phys. Chem. C 2007, 111, 11131–11138.

    Article  Google Scholar 

  19. Chen, P. C.; Xu, J.; Chen, H. T.; Zhou, C. W. Hybrid siliconcarbon nanostructured composites as superior anodes for lithium ion batteries. Nano Res. 2011, 4, 290–296.

    Article  Google Scholar 

  20. Kim, T.; Mo, Y. H.; Nahm, K. S.; Oh, S. M. Carbon nanotubes (CNTs) as a buffer layer in silicon/CNTs composite electrodes for lithium secondary batteries. J. Power Sources 2006, 162, 1275–1281.

    Article  Google Scholar 

  21. Kim, W. S.; Choi, J; Hong, S. H. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 2016, 9, 2174–2181.

    Article  Google Scholar 

  22. Li, N.; Jin, S. X.; Liao, Q. Y.; Cui, H.; Wang, C. X. Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes. Nano Energy 2014, 5, 105–115.

    Article  Google Scholar 

  23. Ding, X. L.; Liu, X. X.; Huang, Y. Y.; Zhang, X. F.; Zhao, Q. J.; Xiang, X. H.; Li, G. L.; He, P. F.; Wen, Z. Y.; Li, J. et al. Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials. Nano Energy 2016, 27, 647–657.

    Article  Google Scholar 

  24. Zhou, X. S.; Cao, A. M.; Wan, L. J.; Guo, Y. G. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Res. 2012, 5, 845–853.

    Article  Google Scholar 

  25. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  26. Hu, C. G.; Zhai, X. Q.; Liu, L. L.; Zhao, Y.; Jiang, L.; Qu, L. T. Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates. Sci. Rep. 2013, 3, 2065.

    Article  Google Scholar 

  27. Lee, S. H.; Park, S.; Min, K.; Yoon, D.; Chanthad, C.; Cho, M.; Kim, J.; Park, J. H.; Lee, Y. Supercritical carbon dioxideassisted process for well-dispersed silicon/graphene composite as a Li ion battery anode. Sci. Rep. 2016, 6, 32011.

    Article  Google Scholar 

  28. Ren, W. F.; Zhang, Z. L.; Wang, Y. H.; Tan, Q. Q.; Zhong, Z. Y.; Su, F. B. Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 5859–5865.

    Article  Google Scholar 

  29. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

    Article  Google Scholar 

  30. Guo, Y. Q.; Sun, X. Y.; Liu, Y.; Wang, W.; Qiu, H. X.; Gao, J. P. One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon 2012, 50, 2513–2523.

    Article  Google Scholar 

  31. Fan, Z. J.; Wang, K.; Wei, T.; Yan, J.; Song, L. P.; Shao, B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 2010, 48, 1686–1689.

    Article  Google Scholar 

  32. Yao, F.; Güneş, F.; Ta, H. Q.; Lee, S. M.; Chae, S. J.; Sheem, K. Y.; Cojocaru, C. S.; Xie, S. S.; Lee, Y. H. Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 2012, 134, 8646–8654.

    Article  Google Scholar 

  33. Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192–8195.

    Article  Google Scholar 

  34. Rathnayake, R. M. N. M.; Wijayasinghe, H. W. M. A. C.; Pitawala, H. M. T. G. A.; Yoshimura, M.; Huang, H. H. Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite. Appl. Surf. Sci. 2017, 393, 309–315.

    Article  Google Scholar 

  35. Yan, M. Y.; Wang, F. C.; Han, C. H.; Ma, X. Y.; Xu, X.; An, Q. Y.; Xu, L.; Niu, C. J.; Zhao, Y. L.; Tian, X. C. et al. Nanowire templated semihollow bicontinuous graphene scrolls: Designed construction, mechanism, and enhanced energy storage performance. J. Am. Chem. Soc. 2013, 135, 18176–18182.

    Article  Google Scholar 

  36. Zhao, Y. L.; Feng, J. G.; Liu, X.; Wang, F. C.; Wang, L. F.; Shi, C. W.; Huang, L.; Feng, X.; Chen, X. Y.; Xu, L. et al. Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nat. Commun. 2014, 5, 4565.

    Google Scholar 

  37. Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Erratum: Growth of conformal graphene cages on micrometresized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 16017.

    Article  Google Scholar 

  38. Liu, X. H.; Zhang, L. Q.; Zhong, L.; Liu, Y.; Zheng, H.; Wang, J. W.; Cho, J. H.; Dayeh, S. A.; Picraux, S. T.; Sullivan, J. P. et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 2011, 11, 2251–2258.

    Article  Google Scholar 

  39. Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

    Article  Google Scholar 

  40. Chan, C. K.; Peng, H. L.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  41. Nyman, A.; Zavalis, T. G.; Elger, R.; Behm, M.; Lindbergh, G. Analysis of the polarization in a Li-ion battery cell by numerical simulations. J. Electrochem. Soc. 2010, 157, A1236–A1246.

    Article  Google Scholar 

  42. Maroni, F.; Raccichini, R.; Birrozzi, A.; Carbonari, G.; Tossici, R.; Croce, F.; Marassi, R.; Nobili, F. Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications. J. Power Sources 2014, 269, 873–882.

    Article  Google Scholar 

  43. Klankowski, S. A.; Pandey, G. P.; Cruden, B. A.; Liu, J. W.; Wu, J.; Rojeski, R. A.; Li, J. Anomalous capacity increase at high-rates in lithium-ion battery anodes based on siliconcoated vertically aligned carbon nanofibers. J. Power Sources 2015, 276, 73–79.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the 1000 Talent Plan program (No. 31270086963030), Key Research Plan of Shandong Province (No. 2015GGE27286), Independent Innovation Foundation of Shandong University, and the Young Scholars Program of Shandong University (No. 2016WLJH03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinkui Feng or Lijie Ci.

Electronic supplementary material

12274_2017_1584_MOESM1_ESM.pdf

Walnut-inspired microsized porous silicon/graphene core–shell composites for high-performance lithium-ion battery anodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, W., Ai, Q., Chen, L. et al. Walnut-inspired microsized porous silicon/graphene core–shell composites for high-performance lithium-ion battery anodes. Nano Res. 10, 4274–4283 (2017). https://doi.org/10.1007/s12274-017-1584-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1584-5

Keywords

Navigation