Skip to main content
Log in

Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalytic reduction of CO2 into high value-added CH4 is a promising solution for energy and environmental crises. Integrating semiconductors with cocatalysts can improve the activities for photocatalytic CO2 reduction; however, most metal cocatalysts mainly produce CO and H2. Herein, we report a cocatalyst hydridation approach for significantly enhancing the photocatalytic reduction of CO2 into CH4. Hydriding Pd cocatalysts into PdH0.43 played a dual role in performance enhancement. As revealed by our isotopic labeling experiments, the PdH0.43 hydride cocatalysts reduced H2 evolution, which suppressed the H2 production and facilitated the conversion of the CO intermediate into the final product: CH4. Meanwhile, hydridation promoted the electron trapping on the cocatalysts, improving the charge separation. This approach increased the photocatalytic selectivity in CH4 production from 3.2% to 63.6% on Pd{100} and from 15.6% to 73.4% on Pd{111}. The results provide insights into photocatalytic mechanism studies and introduce new opportunities for designing materials towards photocatalytic CO2 conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278.

    Article  Google Scholar 

  2. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

    Article  Google Scholar 

  3. Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.

    Article  Google Scholar 

  4. White, J. L.; Baruch, M. F.; Pander, J. E., III; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.

    Article  Google Scholar 

  5. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

    Article  Google Scholar 

  6. Yu, J. G.; Low, J. X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.

    Article  Google Scholar 

  7. Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134, 11276–11281.

    Article  Google Scholar 

  8. Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.; Yan, S. C.; Zou, Z. G. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J. Am. Chem. Soc. 2010, 132, 14385–14387.

    Article  Google Scholar 

  9. Li, P.; Zhou, Y.; Zhao, Z. Y.; Xu, Q. F.; Wang, X. Y.; Xiao, M.; Zou, Z. G. Hexahedron prism-anchored octahedronal CeO2: Crystal facet-based homojunction promoting efficient solar fuel synthesis. J. Am. Chem. Soc. 2015, 137, 9547–9550.

    Article  Google Scholar 

  10. Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.

    Article  Google Scholar 

  11. Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863–20868.

    Article  Google Scholar 

  12. Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.

    Article  Google Scholar 

  13. Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide co-catalysts with a core–shell structure. Angew. Chem., Int. Ed. 2013, 52, 5776–5779.

    Article  Google Scholar 

  14. Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Two-dimensional g-C3N4: An ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem. Commun. 2014, 50, 6094–6097.

    Article  Google Scholar 

  15. Neaţu, S.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 2014, 136, 15969–15976.

    Article  Google Scholar 

  16. Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 2009, 9, 731–737.

    Article  Google Scholar 

  17. Yang, J. H.; Wang, D.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

    Article  Google Scholar 

  18. Marszewski, M.; Cao, S. W.; Yu, J. G.; Jaroniec, M. Semiconductor-based photocatalytic CO2 conversion. Mater. Horiz. 2015, 2, 261–278.

    Article  Google Scholar 

  19. Sarkar, A.; Gracia-Espino, E.; Wågberg, T.; Shchukarev, A.; Mohl, M.; Rautio, A. R.; Pitkänen, O.; Sharifi, T.; Kordas, K.; Mikkola, J. P. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res. 2016, 9, 1956–1968.

    Article  Google Scholar 

  20. Tan, L. L.; Ong, W. J.; Chai, S. P.; Mohamed, A. R. Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane. Appl. Catal. B: Environ. 2015, 166–167, 251–259.

    Article  Google Scholar 

  21. Zhang, X. J.; Han, F.; Shi, B.; Farsinezhad, S.; Dechaine, G. P.; Shankar, K. Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem., Int. Ed. 2012, 51, 12732–12735.

    Article  Google Scholar 

  22. Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.

    Article  Google Scholar 

  23. Ressler, T. WinXAS: A program for X-ray absorption spectroscopy data analysis under MS-Windows. J. Synchrotron Rad. 1998, 5, 118–122.

    Article  Google Scholar 

  24. Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576.

    Article  Google Scholar 

  25. Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.

    Article  Google Scholar 

  26. Di Vece, M.; Grandjean, D.; Van Bael, M. J.; Romero, C. P.; Wang, X.; Decoster, S.; Vantomme, A.; Lievens, P. Hydrogeninduced ostwald ripening at room temperature in a Pd nanocluster film. Phys. Rev. Lett. 2008, 100, 236105.

    Article  Google Scholar 

  27. Davis, R. J.; Landry, S. M.; Horsley, J. A.; Boudart, M. X-ray-absorption study of the interaction of hydrogen with clusters of supported palladium. Phys. Rev. B 1989, 39, 10580–10583.

    Article  Google Scholar 

  28. Watari, N.; Ohnishi, S.; Ishii, Y. Hydrogen storage in Pd clusters. J. Phys.: Condens. Matter 2000, 12, 6799–6823.

    Google Scholar 

  29. Kato, S.; Matam, S. K.; Kerger, P.; Bernard, L.; Battaglia, C.; Vogel, D.; Rowerder, M.; Züttel, A. The origin of the catalytic activity of a metal hydride in CO2 reduction. Angew. Chem., Int. Ed. 2016, 55, 6028–6032.

    Article  Google Scholar 

  30. Zhang, S.; Kang, P.; Bakir, M.; Lapides, A. M.; Dares, C. J.; Meyer, T. J. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proc. Natl. Acad. Sci. USA 2015, 112, 15809–15814.

    Article  Google Scholar 

  31. Park, H. A.; Choi, J. H.; Choi, K. M.; Lee, D. K.; Kang, J. K. Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J. Mater. Chem. 2012, 22, 5304–5307.

    Article  Google Scholar 

  32. Liu, H. M.; Li, M.; Dao, T. D.; Liu, Y. Y.; Zhou, W.; Liu, L. Q.; Meng, X. G.; Nagao, T.; Ye, J. H. Design of PdAu alloy plasmonic nanoparticles for improved catalytic performance in CO2 reduction with visible light irradiation. Nano Energy 2016, 26, 398–404.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by the National Natural Science Foundation of China (Nos. 21471141, U1532135, and 21603191), CAS Key Research Program of Frontier Sciences (No. QYZDB-SSW-SLH018), Zhejiang Provincial Natural Science Foundation (No. LQ16B010001), Recruitment Program of Global Experts, and CAS Hundred Talent Program. XAFS measurements were performed at the beamline BL14W1 in the Shanghai Synchrotron Radiation Facility (SSRF), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Bai, Zhengquan Li or Yujie Xiong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Gao, C., Bai, S. et al. Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4 . Nano Res. 10, 3396–3406 (2017). https://doi.org/10.1007/s12274-017-1552-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1552-0

Keywords

Navigation