Skip to main content
Log in

Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Thermoelectric materials, which can convert waste heat into electricity, have received increasing research interest in recent years. This paper describes the recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures. We start our discussion with the strategies of improving the power factor of a given material by using nanoheterostructures. Then we discuss the methods of decreasing thermal conductivity. Finally, we highlight a way of decoupling power factor and thermal conductivity, namely, incorporating phase-transition materials into a nanowire heterostructure. We have explored the lead telluride–copper telluride thermoelectric nanowire heterostructure in this work. Future possible ways to improve the figure of merit are discussed at the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

    Article  Google Scholar 

  2. Wang, H.; Pei, Y. Z.; LaLonde, A. D.; Snyder, G. J. Heavily doped p-type PbSe with high thermoelectric performance: An alternative for PbTe. Adv. Mater. 2011, 23, 1366–1370.

    Article  Google Scholar 

  3. Pei, Y. Z.; Shi, X. Y.; LaLonde, A.; Wang, H.; Chen, L. D.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectric. Nature 2011, 473, 66–69.

    Article  Google Scholar 

  4. Heremans, J. P.; Jovoviv, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557.

    Article  Google Scholar 

  5. Yang, H. R.; Bahk, J. H.; Day, T.; Mohammed, A. M. S.; Snyder, G. J.; Shakouri, A.; Wu, Y. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. Nano Lett. 2015, 15, 1349–1355.

    Article  Google Scholar 

  6. Wu, D.; Pei, Y. L.; Wang, Z.; Wu, H. J.; Huang, L.; Zhao, L. D.; He, J. Q. Significantly enhanced thermoelectric performance in n-type heterogeneous BiAgSeS composites. Adv. Func. Mater. 2014, 24, 7763–7771.

    Article  Google Scholar 

  7. Liu, H. L.; Shi, X.; Xu, F. F.; Zhang, L. L.; Zhang, W. Q.; Chen, L. D.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J. Copper ion liquid-like thermoelectric. Nat. Mater. 2012, 11, 422–425.

    Article  Google Scholar 

  8. Zhao, L. D.; Tan, G. J.; Hao, S. Q.; He, J. Q.; Pei, Y. L.; Chi, H.; Wang, H.; Gong, S. K.; Xu, H. B.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144.

    Article  Google Scholar 

  9. Li, J.; Sui, J. H.; Pei, Y. L.; Barreteau, C.; Berardan, D.; Dragoe, N.; Cai, W.; He, J. Q.; Zhao, L. D. A high thermoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci. 2012, 5, 8543–8547.

    Article  Google Scholar 

  10. Lin, H.; Tan, G. J. Shen, J. N.; Hao, S. Q.; Wu, L. M.; Calta, N.; Malliakas, C.; Wang, S.; Uher, C.; Wolverton, C. et al. Concerted rattling CsAg5Te3 leading to ultralow thermal conductivity and high thermoelectric performance. Angew. Chem., Int. Ed. 2016, 55, 11431–11436.

    Article  Google Scholar 

  11. Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821.

    Article  Google Scholar 

  12. Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, Pawan. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053.

    Article  Google Scholar 

  13. Liang, Y. T.; Lu, C. G.; Ding, D. F.; Zhao, M.; Wang, D. W.; Hu, C.; Qiu, J. S.; Xie, G.; Tang, Z. Y. Capping nanoparticles with grapheme quantum dots for enhanced thermoelectric performance. Chem. Sci. 2015, 6, 4103–4108.

    Article  Google Scholar 

  14. Ibáñez, M.; Zamani, R.; Lalonde, A.; Cadavid, D.; Li, W. H.; Shavel, A.; Arbiol, J.; Morante, J. R.; Gorsse, S.; Snyder, G. J. Cu2ZnGeSe4 nanocrystals: Synthesis and thermoelectric properties. J. Am. Chem. Soc. 2012, 134, 4060–4063.

    Article  Google Scholar 

  15. Scheele, M.; Oeschler, N.; Veremchuk, I.; Reinsberg, K. G.; Kreuziger, A. M.; Kornowski, A.; Broekaert, J.; Klinke, C.; Weller, H. ZT enhancement in solution-grown Sb(2-x)BixTe3 nanoplatelets. ACS Nano 2010, 4, 4283–4291.

    Article  Google Scholar 

  16. Erwin, S. C.; Zu, L. J.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436, 91–94.

    Article  Google Scholar 

  17. Dalpian, G. M.; Chelikowsky, J. R. Self-purification in semiconductor nanocrystals. Phys. Rev. Lett. 2006, 96, 226802.

    Article  Google Scholar 

  18. Carbone, L.; Cozzoli, P. D. Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 2010, 5, 449–493.

    Article  Google Scholar 

  19. Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4879.

    Article  Google Scholar 

  20. Banin, U.; Yuval, B. S.; Vinokurov, K. Hybrid semiconductor–metal nanoparticles: From architecture to function. Chem. Mater. 2014, 26, 97–110.

    Article  Google Scholar 

  21. Ma, Y.; Heijl, R.; Palmqvist, A. E. Composite thermoelectric materials with embedded nanoparticles. J. Mater. Sci. 2013, 48, 2767–2778.

    Article  Google Scholar 

  22. Zhou, W. W.; Zhu, J. X.; Li, D.; Hng, H. H.; Boey, F. Y. C.; Ma, J.; Zhang, H.; Yan, Q. Y. Binary-phased nanoparticles for enhanced thermoelectric properties. Adv. Mater. 2009, 21, 3196–3200.

    Article  Google Scholar 

  23. Heremans, J. P.; Thrush, C. M.; Morelli, D. T. Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B. 2004, 70, 115334.

    Article  Google Scholar 

  24. Wang, Y.; Chen, X.; Cui, T.; Niu, Y. L.; Wang, Y. C.; Wang, M.; Ma, Y. M.; Zou, G. T. Enhanced thermoelectric performance of PbTe within the orthorhombic Pnma phase. Phys. Rev. B. 2007, 76, 155127.

    Article  Google Scholar 

  25. Pei, Y. Z.; Heinz, N. A.; Snyder, G. J. Allowing to increase the band gap for improving thermoelectric properties of Ag2Te. J. Mater. Chem. 2011, 21, 18256–18260.

    Article  Google Scholar 

  26. Li, S. K.; Xin, C.; Liu, X. R.; Feng, Y. C.; Liu, Y. D.; Zheng, J. X.; Liu, F. S.; Huang, Q. Z.; Qiu, Y. M.; He, J. Q. et al. 2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance. Nano Energy 2016, 30, 780–789.

    Article  Google Scholar 

  27. Callaway, J.; Baeyer, H. C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 1960, 120, 1149–1154.

    Article  Google Scholar 

  28. Feng, T. L.; Ruan, X. L. Prediction of spectral phonon mean free path and thermal conductivity with applications to thermoelectric and thermal management: A review. J. Nanomater. 2014, 2014, Article ID206370.

    Google Scholar 

  29. Ibáñez, M.; Zamani, R.; Gorsse, S.; Fan, J. D.; Ortega, S.; Cadavid, D.; Morante, J. R.; Arbiol, J.; Cabot, A. Core-shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: PbTe-PbS thermoelectric properties. ACS Nano 2013, 7, 2573–2586.

    Article  Google Scholar 

  30. Mingo, N.; Hauser, D.; Kobayashi, N. P.; Plissonnier, M.; Shakouri, A. “Nanoparticle-in-alloy” approach to efficient thermoelectric: Silicides in SiGe. Nano Lett. 2009, 9, 711–715.

    Article  Google Scholar 

  31. Fang, H. Y.; Feng, T. L.; Yang, H. R.; Ruan, X. L.; Wu, Y. Synthesis and thermoelectric properties of compositionalmodulated lead telluride–bismuth telluride nanowire heterostructures. Nano Lett. 2013, 13, 2058–2063.

    Article  Google Scholar 

  32. Son, J. S.; Choi, M. K.; Han, M. K.; Park, K.; Kim, J. Y.; Lim, S. J.; Oh, M.; Kuk, Y.; Park, C.; Kim, S. J. et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 2012, 12, 640–647.

    Article  Google Scholar 

  33. Yu, B.; Liu, W. S.; Chen, S.; Wang, H.; Wang, H. Z.; Chen, G.; Ren, Z. F. Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano Energy 2012, 1, 472–478.

    Article  Google Scholar 

  34. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 114, 8706–8715.

    Article  Google Scholar 

Download references

Acknowledgements

Y. W. gratefully thank the support from Office of Naval Research, Award Number N00014-16-1-2066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Xu, B., Zhou, L. et al. Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures. Nano Res. 10, 1498–1509 (2017). https://doi.org/10.1007/s12274-017-1422-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1422-9

Keywords

Navigation