Skip to main content
Log in

Precise synthesis of discrete and dispersible carbon-protected magnetic nanoparticles for efficient magnetic resonance imaging and photothermal therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon-protected magnetic nanoparticles exhibit long-term stability in acid or alkaline medium, good biocompatibility, and high saturation magnetization. As a result, they hold great promise for magnetic resonance imaging, photothermal therapy, etc. However, since pyrolysis, which is often required to convert the carbon precursors to carbon, typically leads to coalescence of the nanoparticles, the obtained carbon-protected magnetic nanoparticles are usually sintered as a non-dispersible aggregation. We have successfully synthesized discrete, dispersible, and uniform carbon-protected magnetic nanoparticles via a precise surface/interface nano-engineering approach. Remarkably, the nanoparticles possess excellent water-dispersibility, biocompatibility, a high T 2 relaxivity coefficient (384 mM–1·s–1), and a high photothermal heating effect. Furthermore, they can be used as multifunctional core components suited for future extended investigation in early diagnosis, detection and therapy, catalysis, separation, and magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mahmoudi, M.; Hosseinkhani, H.; Hosseinkhani, M.; Boutry, S.; Simchi, A.; Journeay, W. S.; Subramani, K.; Laurent, S. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem. Rev. 2011, 111, 253–280.

    Article  Google Scholar 

  2. Lu, A.-H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 2007, 46, 1222–1244.

    Article  Google Scholar 

  3. Gallo, J.; Long, N. J.; Aboagye, E. O. Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem. Soc. Rev. 2013, 42, 7816–7833.

    Article  Google Scholar 

  4. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer R. B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics and applications. Chem. Rev. 1999, 99, 2293–2352.

    Article  Google Scholar 

  5. Wang, C.; Chen, J. C.; Zhou, X. R.; Li, W.; Liu, Y.; Yue, Q.; Xue, Z. T.; Li, Y. H.; Elzatahry, A. A.; Deng, Y. H. et al. Magnetic yolk–shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Res. 2015, 8, 238–245.

    Article  Google Scholar 

  6. Ananta, J. S.; Godin, B.; Sethi, R.; Moriggi, L.; Liu, X. W.; Serda R. E.; Krishnamurthy, R.; Muthupillai, R.; Bolskar, R. D.; Helm, L. et al. Geometrical confinement of gadoliniumbased contrast agents in nanoporous particles enhances T1 contrast. Nat. Nanotechnol. 2010, 5, 815–821.

    Article  Google Scholar 

  7. Piao, Y. Z.; Kim, J.; Na, H. B.; Kim, D.; Baek, J. S.; Ko, M. K.; Lee, J. H.; Shokouhimehr, M.; Hyeon, T. Wrap-bake-peel proceßs for nanostructural transformation from ß-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat. Mater. 2008, 7, 242-247.

    Article  Google Scholar 

  8. Colombo, M.; Carregal-Romero, S.; Casula, M. F.; Gutiérrez, L.; Morales, M. P.; Böhm, I. B.; Heverhagen, J. T.; Prosperi, D.; Parak, W. J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 2012, 41, 4306-4334.

    Article  Google Scholar 

  9. Ma, X. X.; Tao, H. Q.; Yang, K.; Feng, L. Z.; Cheng, L.; Shi, X. Z.; Li, Y. G.; Guo, L.; Liu Z. A functionalized graphene oxide–iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012, 5, 199–212.

    Article  Google Scholar 

  10. Huang, Y. M.; Hu, L.; Zhang, T. T.; Zhong, H.; Zhou, J. J.; Liu, Z. B.; Wang, H. B.; Guo, Z.; Chen, Q. W. Mn3[Co(CN)6]2@SiO2 core–shell nanocubes: Novel bimodal contrast agents for MRI and optical imaging. Sci. Rep. 2013, 3, 2647.

    Google Scholar 

  11. Sun, Z. K.; Yang, J. P.; Wang, J. X.; Li, W.; Kaliaguine, S.; Hou, X. F.; Deng, Y. H.; Zhao, D. Y. A versatile designed synthesis of magnetically separable nano-catalysts with welldefined core–shell nanostructures. J. Mater. Chem. A 2014, 2, 6071–6074.

    Google Scholar 

  12. Zhou, L.; Li, Z. H.; Ju, E. G.; Liu, Z.; Ren, J. S.; Qu, X. G. Aptamer-directed synthesis of multifunctional lanthanidedoped porous nanoprobes for targeted imaging and drug delivery. Small 2013, 9, 4262-4268.

    Article  Google Scholar 

  13. Jun, Y. W.; Lee, J.-H.; Cheon, J. Chemical design of nanoparticle probes for high performance magnetic resonance imaging. Angew. Chem., Int. Ed. 2008, 47, 5122–5135.

    Article  Google Scholar 

  14. Shah, B.; Yin, P. T.; Ghoshal, S.; Lee, K. B. Multimodal magnetic core–shell nanoparticles for effective stem-cell differentiation and imaging. Angew. Chem., Int. Ed. 2013, 52, 6190–6195.

    Article  Google Scholar 

  15. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110.

    Article  Google Scholar 

  16. Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878.

    Article  Google Scholar 

  17. Xia, A.; Hu, J. H.; Wang, C. C.; Jiang, D. L. Synthesis of magnetic microspheres with controllable structure via polymerization-triggered self-positioning of nanocrystals. Small 2007, 3, 1811–1817.

    Article  Google Scholar 

  18. Wang, Y.; Teng, X. W.; Wang, J. S.; Yang, H. Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core–shell nanoparticles. Nano Lett. 2003, 3, 789–793.

    Article  Google Scholar 

  19. Xu, Z. Z.; Wang, C. C.; Yang, W. L.; Deng, Y. H.; Fu, S. K. Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization. J. Magn. Magn. Mater. 2004, 277, 136–143.

    Article  Google Scholar 

  20. Xu, H.; Cui, L. L.; Tong, N. H.; Gu, H. C. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. J. Am. Chem. Soc. 2006, 128, 15582–15583.

    Article  Google Scholar 

  21. Zeng, J. F.; Jing, L. H.; Hou, Y.; Jiao, M. X.; Qiao, R. R.; Jia, Q. J.; Liu, C. Y.; Fang, F.; Lei, H.; Gao, M. Y. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: Towards high performance MRI contrast agents. Adv. Mater. 2014, 26, 2694–2698.

    Article  Google Scholar 

  22. Lu, Y.; Yin, Y. D.; Mayers, B. T.; Xia, Y. N. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2002, 2, 183–186.

    Article  Google Scholar 

  23. Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28–29.

    Article  Google Scholar 

  24. Ge, J. P.; Hu, Y. X.; Zhang, T. R.; Yin, Y. D. Superparamagnetic composite colloids with anisotropic structures. J. Am. Chem. Soc. 2007, 129, 8974–8945.

    Article  Google Scholar 

  25. Yue, Q.; Zhang, Y.; Wang, C.; Wang, X. Q.; Sun, Z. K.; Hou, X. F.; Zhao, D. Y.; Deng, Y. H. Magnetic yolk–shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. J. Mater. Chem. A 2015, 3, 4586–4594.

    Article  Google Scholar 

  26. Yue, Q.; Li, J. L.; Luo, W.; Zhang, Y.; Elzatahry, A. A.; Wang, X. Q.; Wang, C.; Li, W.; Cheng, X. W.; Alghamdi, A. et al. An interface coassembly in biliquid phase: Toward core–shell magnetic mesoporous silica microspheres with tunable pore size. J. Am. Chem. Soc. 2015, 137, 13282–13289.

    Article  Google Scholar 

  27. Xuan, S. H.; Hao, L. Y.; Jiang, W. Q.; Gong, X. L.; Hu, Y.; Chen, Z. Y. A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites. Nanotechnology 2007, 18, 035602.

  28. Zhang, X. B.; Tong, H. W.; Liu, S. M.; Yong, G. P.; Guan, Y. F. An improved stöber method towards uniform and monodisperse Fe3O4@C nanospheres. J. Mater. Chem. A 2013, 1, 7488-7493.

    Article  Google Scholar 

  29. Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.

    Article  Google Scholar 

  30. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem., Int. Ed. 2008, 47, 8438–8441.

    Article  Google Scholar 

  31. Lu, A.-H.; Hao, G.-P.; Sun, Q.; Zhang, X.-Q.; Li, W.-C. Chemical synthesis of carbon materials with intriguing nanostructure and morphology. Macromol. Chem. Phys. 2012, 213, 1107–1131.

    Article  Google Scholar 

  32. Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem., Int. Ed. 2010, 49, 7987–7991.

    Article  Google Scholar 

  33. Zhang, G. Q.; Wu, H. B.; Song, T.; Paik, U.; Lou, X. W. TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 12590–12593.

    Google Scholar 

  34. Gu, L.; Koymen, A. R.; Mohanty, S. K. Crystalline magnetic carbon nanoparticle assisted photothermal delivery into cells using CW near-infrared laser beam. Sci. Rep. 2014, 4, 5106.

    Google Scholar 

  35. Yu, G. B.; Sun, B.; Pei, Y.; Xie, S. H.; Yan, S. R.; Qiao, M. H.; Fan, K. N.; Zhang, X. X.; Zong, B. N. FexOy@C spheres as an excellent catalyst for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 2010, 132, 935–937.

    Article  Google Scholar 

  36. Lu, A.-H.; Sun, T.; Li, W.-C.; Sun, Q.; Han, F.; Liu, D.-H.; Guo, Y. Synthesis of discrete and dispersible hollow carbon nanospheres with high uniformity by using confined nanospace pyrolysis. Angew. Chem., Int. Ed. 2011, 50, 11765-11768.

    Article  Google Scholar 

  37. Zheng, Y. H.; Cheng, Y.; Wang, Y. S.; Bao, F.; Zhou, L. H.; Wei, X. F.; Zhang, Y. Y.; Zheng, Q. Quasicubic a-Fe2O3 nanoparticles with excellent catalytic performance. J. Phys. Chem. B 2006, 110, 3093-3097.

    Article  Google Scholar 

  38. Wang, L. M.; Sun, Q.; Wang, X.; Wen, T.; Yin, J.-J.; Wang, P. Y.; Bai, R.; Zhang, X.-Q.; Zhang, L.-H.; Lu, A.-H. et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc. 2015, 137, 1947–1955.

    Article  Google Scholar 

  39. Murad, E. Magnetic properties of microcrystalline iron (III) oxides and related materials as reflected in their Mössbauer spectra. Phys. Chem. Minerals 1996, 23, 248–262.

    Article  Google Scholar 

  40. Zhao, Z. H.; Zhou, Z. J.; Bao, J. F.; Wang, Z. Y.; Hu, J.; Chi, X. Q.; Ni, K. Y.; Wang, R. F.; Chen, X. Y.; Chen, Z. et al. Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat. Commun. 2013, 4, 2266.

    Google Scholar 

  41. Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D. G. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971-976.

    Article  Google Scholar 

  42. Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

    Article  Google Scholar 

  43. Liu, J.; Zheng, X. P.; Yan, L.; Zhou, L. J.; Tian, G.; Yin, W. Y.; Wang, L. M.; Liu, Y.; Hu, Z. B.; Gu, Z. J. et al. Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano 2015, 9, 696–707.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to An-Hui Lu, Yan Zhang or Ferdi Schüth.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, AH., Zhang, XQ., Sun, Q. et al. Precise synthesis of discrete and dispersible carbon-protected magnetic nanoparticles for efficient magnetic resonance imaging and photothermal therapy. Nano Res. 9, 1460–1469 (2016). https://doi.org/10.1007/s12274-016-1042-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1042-9

Keywords

Navigation