Skip to main content
Log in

Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ultrasmall Au10 clusters have a unique electronic structure and can act as a charge reservoir to donate electrons or accept charges. This is particularly important for catalysis, since it leads to facile charge transfer across the interface between the gold species and the oxide substrate. To determine the electronic and structural effects of Au10 on the catalytic oxidation, a TiO2 charge carrier was chosen as the substrate to anchor Au10 for olefin oxidation. Au10 supported on TiO2-RP (RP = pyramid-capped columnar structure) exhibited superior catalytic activity to Au10/TiO2 nanotubes and Au10/P25. In addition, the supported Au10 clusters gave rise to higher activity than supported Au20, Au144 clusters, and 5 nm Au nanocrystals. The superior catalytic ability of Au10/TiO2-RP arises from the charge/discharge effect of the Au10/TiO2-RP interface, which effectively improves the formation of active oxygen species on electron-rich gold atoms at the terminal position of Au10, and promotes the activation of olefin C=C bonds on the electron-deficient gold atoms of Au10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.

    Article  Google Scholar 

  2. Hutchings, G. Catalysis: A golden future. Gold Bull. 1996, 29, 123–130.

    Article  Google Scholar 

  3. Cai, J. Y.; Ma, H.; Zhang, J. J.; Song, Q.; Du, Z. T.; Huang, Y. Z.; Xu, J. Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions. Chem.—Eur. J. 2013, 19, 14215–14223.

    Article  Google Scholar 

  4. Chong, H. B.; Li, P.; Wang, S. X.; Fu, F. Y.; Xiang, J.; Zhu, M. Z.; Li, Y. D. Au25 clusters as electron-transfer catalysts induced the intramolecular cascade reaction of 2-nitrobenzonitrile. Sci. Rep. 2013, 3, 3214.

    Article  Google Scholar 

  5. Das, A.; Liu, C.; Byun, H. Y.; Nobusada, K.; Zhao, S.; Rosi, N.; Jin, R. C. Structure determination of [Au18(SR)14]. Angew. Chem., Int. Ed. 2015, 54, 3140–3144.

    Article  Google Scholar 

  6. Redel, E.; Walter, M.; Thomann, R.; Vollmer, C.; Hussein, L.; Scherer, H.; Krüger, M.; Janiak, C. Synthesis, stabilization, functionalization and, DFT calculations of gold nanoparticles in fluorous phases (PTFE and ionic liquids). Chem.—Eur. J. 2009, 15, 10047–10059.

    Article  Google Scholar 

  7. Qian, H. F.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. C. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281.

    Article  Google Scholar 

  8. Chen, S.; Wang, S. X.; Zhong, J.; Song, Y. B.; Zhang, J.; Sheng, H. T.; Pei, Y.; Zhu, M. Z. The structure and optical properties of the [Au18(SR)14] nanocluster. Angew. Chem., Int. Ed. 2015, 54, 3145–3149.

    Article  Google Scholar 

  9. Jin, R. C.; Zhu, Y.; Qian, H. F. Quantum-sized gold nanoclusters: Bridging the gap between organometallics and nanocrystals. Chem.—Eur. J. 2011, 17, 6584–6593.

    Article  Google Scholar 

  10. Huang, P.; Chen, G. X.; Jiang, Z.; Jin, R. C.; Zhu, Y.; Sun, Y. H. Atomically precise Au25 superatoms immobilized on CeO2 nanorods for styrene oxidation. Nanoscale 2013, 5, 3668–3672.

    Article  Google Scholar 

  11. Tsunoyama, H.; Liu, Y. M.; Akita, T.; Ichikuni, N.; Sakurai, H.; Xie, S. H.; Tsukuda, T. Size-controlled synthesis of gold clusters as efficient catalysts for aerobic oxidation. Catal. Surv. Asia 2011, 15, 230–239.

    Article  Google Scholar 

  12. Zhu, Y.; Qian, H. F.; Jin, R. C. Catalysis opportunities of atomically precise gold nanoclusters. J. Mater. Chem. 2011, 21, 6793–6799.

    Article  Google Scholar 

  13. Zhu, Y.; Qian, H. F.; Jin, R. C. An atomic-level strategy for unraveling gold nanocatalysis from the perspective of Aun(SR)m nanoclusters. Chem.—Eur. J. 2010, 16, 11455–11462.

    Article  Google Scholar 

  14. Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res 2013, 46, 1749–1758.

    Article  Google Scholar 

  15. Kumara, C.; Zuo, X. B.; Ilavsky, J.; Chapman, K. W.; Cullen, D. A.; Dass, A. Super-stable, highly monodisperse plasmonic faradaurate-500 nanocrystals with 500 gold atoms: Au~500(SR)~120. J. Am. Chem. Soc. 2014, 136, 7410–7417.

    Article  Google Scholar 

  16. Azubel, M.; Koivisto, J.; Malola, S.; Bushnell, D.; Hura, G. L.; Koh, A. L.; Tsunoyama, H.; Tsukuda, T.; Pettersson, M.; Häkkinen, H. et al. Electron microscopy of gold nanoparticles at atomic resolution. Science 2014, 345, 909–912.

    Article  Google Scholar 

  17. Yoon, B.; Hä kkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J. M.; Abbet, S.; Judai, K.; Heiz, U. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 2005, 307, 403–409.

    Article  Google Scholar 

  18. Nie, X. T.; Zeng, C. J.; Ma, X. G.; Qian, H. F.; Ge, Q. J.; Xu, H. Y.; Jin, R. C. CeO2-supported Au38(SR)24 nanocluster catalysts for CO oxidation: A comparison of ligand-on and -off catalysts. Nanoscale 2013, 5, 5912–5918.

    Article  Google Scholar 

  19. Jin, R. X.; Liu, C.; Zhao, S.; Das, A.; Xing, H. Z.; Gayathri, C.; Xing, Y.; Rosi, N. L.; Gil, R. R.; Jin, R. C. Triicosahedral gold nanocluster [Au37(PPh3)10(SC2H4Ph)10X2]+: Linear assembly of icosahedral building blocks. ACS Nano 2015, 9, 8530–8536.

    Article  Google Scholar 

  20. Liu, Y. M.; Tsunoyama, H.; Akita, T.; Tsukuda, T. Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite. Chem. Commun. 2010, 46, 550–552.

    Article  Google Scholar 

  21. Zhu, Y.; Qian, H. F.; Zhu, M. Z.; Jin, R. C. Thiolate-protected Aun nanoclusters as catalysts for selective oxidation and hydrogenation processes. Adv. Mater. 2010, 22, 1915–1920.

    Article  Google Scholar 

  22. Liu, Y. M.; Tsunoyama, H.; Akita, T.; Xie, S. H.; Tsukuda, T. Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: Size effect in the sub-2 nm regime. ACS Catal. 2011, 1, 2–6.

    Article  Google Scholar 

  23. Zhu, Y.; Wu, Z. K.; Gayathri, C.; Qian, H. F.; Gil, R. R.; Jin, R. C. Exploring stereoselectivity of Au25 nanoparticle catalyst for hydrogenation of cyclic ketone. J. Catal. 2010, 271, 155–160.

    Article  Google Scholar 

  24. Zhu, Y.; Qian, H. F.; Drake, B. A.; Jin, R. C. Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of a,ß-unsaturated ketones and aldehydes. Angew. Chem., Int. Ed. 2010, 49, 1295–1298.

    Article  Google Scholar 

  25. Fierro-Gonzalez, J. C.; Gates, B. C. Catalysis by gold dispersed on supports: The importance of cationic gold. Chem. Soc. Rev. 2008, 37, 2127–2134.

    Article  Google Scholar 

  26. Chen, M. S.; Goodman, D. W. Catalytically active gold on ordered titania supports. Chem. Soc. Rev. 2008, 37, 1860–1870.

    Article  Google Scholar 

  27. Boccuzzi, F.; Chiorino, A. Ftir study of CO oxidation on Au/TiO2 at 90 K and room temperature. An insight into the nature of the reaction centers. J. Phys. Chem. B 2000, 104, 5414–5416.

    Article  Google Scholar 

  28. Wang, Y.-G.; Yoon, Y.; Glezakou, V.-A.; Li, J.; Rousseau, R. The role of reducible oxide–metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 2013, 135, 10673–10683.

    Article  Google Scholar 

  29. Liu, L. M.; McAllister, B.; Ye, H. Q.; Hu, P. Identifying an O2 supply pathway in CO oxidation on Au/TiO2(110): A density functional theory study on the intrinsic role of water. J. Am. Chem. Soc. 2006, 128, 4017–4022.

    Article  Google Scholar 

  30. Janssens, T. V. W.; Clausen, B. S.; Hvolbæk, B.; Falsig, H.; Christensen, C. H.; Bligaard, T.; Nørskov, J. K. Insights into the reactivity of supported Au nanoparticles: Combining theory and experiments. Top. Catal. 2007, 44, 15–26.

    Article  Google Scholar 

  31. Chen, M. S.; Cai, Y.; Yan, Z.; Goodman, D. W. On the origin of the unique properties of supported Au nanoparticles. J. Am. Chem. Soc. 2006, 128, 6341–6346.

    Article  Google Scholar 

  32. Zhang, C. J.; Michaelides, A.; King, D. A.; Jenkins, S. J. Positive charge states and possible polymorphism of gold nanoclusters on reduced ceria. J. Am. Chem. Soc. 2010, 132, 2175–2182.

    Article  Google Scholar 

  33. Gilb, S.; Weis, P.; Furche, F.; Ahlrichs, R.; Kappes, M. M. Structures of small gold cluster cations (Au +n , n < 14): Ion mobility measurements versus density functional calculations. J. Chem. Phys. 2002, 116, 4094–4101.

    Article  Google Scholar 

  34. Yang, X.; Shi, M. M.; Zhou, R. J.; Chen, X. Q.; Chen, H. Z. Blending of HAuCl4 and histidine in aqueous solution: A simple approach to the Au10 cluster. Nanoscale 2011, 3, 2596–2601.

    Article  Google Scholar 

  35. Häkkinen, H.; Landman, U. Gold clusters (AuN, 2 ≤ N ≤10) and their anions. Phys. Rev. B 2000, 62, R2287–R2290.

    Article  Google Scholar 

  36. Han, Z.; Zhang, D. J.; Liu, C. B. A theoretical study on the geometrical structure and electronic properties of Au10 cluster. Acta Chim. Sinica 2009, 67, 387–391.

    Google Scholar 

  37. Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Y. Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 51, 6223–6226.

    Article  Google Scholar 

  38. Ohno, T.; Sarukawa, K.; Matsumura, M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem. 2002, 26, 1167–1170.

    Article  Google Scholar 

  39. Bae, E.; Murakami, N.; Ohno, T. Exposed crystal surfacecontrolled TiO2 nanorods having rutile phase from TiCl3 under hydrothermal conditions. J. Mol. Catal. A-Chem. 2009, 300, 72–79.

    Article  Google Scholar 

  40. Wang, D. M.; Zhang, Y.; Zheng, L. L.; Yang, X. X.; Wang, Y.; Huang, C. Z. Singlet oxygen involved luminol chemiluminescence catalyzed by graphene oxide. J. Phys. Chem. C 2012, 116, 21622–21628.

    Article  Google Scholar 

  41. Ledenev, A. N.; Konstantinov, A. A.; Popova, E.; Ruuge, E. K. A simple assay of the superoxide generation rate with Tiron as an EPR-visible radical scavenger. Biochem. Int. 1986, 13, 391–396.

    Google Scholar 

  42. Sueishi, Y.; Miyazono, K.; Kozai, K. Effects of substituent and external pressure on spin trapping rates of carbon dioxide anion, sulfur trioxide anion, hydroxyl, and ethyl radicals with various pbn- and dmpo-type spin traps. Z. Phys. Chem. 2014, 228, 927–938.

    Article  Google Scholar 

  43. Aikens, C. M. Origin of discrete optical absorption spectra of M25(SH)18-nanoparticles (M = Au, Ag). J. Phys. Chem. C 2008, 112, 19797–19800.

    Article  Google Scholar 

  44. Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. USA 2008, 105, 9157–9162.

    Article  Google Scholar 

  45. Suriye, K.; Praserthdam, P.; Jongsomjit, B. Impact of Ti3+ present in titania on characteristics and catalytic properties of the CO/TiO2 catalyst. Ind. Eng. Chem. Res. 2005, 44, 6599–6604.

    Article  Google Scholar 

  46. Iyengar, R. D.; Codell, M. TiO2 and ZnO surface studies by electron spin resonance spectroscopy. Adv. Colloid Interface Sci. 1972, 3, 365–388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhan Sun or Yan Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Huang, S., Song, J. et al. Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation. Nano Res. 9, 1182–1192 (2016). https://doi.org/10.1007/s12274-016-1012-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1012-2

Keywords

Navigation