Skip to main content
Log in

Visually monitoring the etching process of gold nanoparticles by KI/I2 at single-nanoparticle level using scattered-light dark-field microscopic imaging

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Real-time monitoring of reaction processes is helpful for understanding the reaction mechanisms. In this study, we investigated the etching mechanism of gold nanoparticles (AuNPs) by iodine on a single-nanoparticle level because AuNPs have become important nanoprobes with applications in sensing and bioimaging fields owing to their specific localized surface plasmon resonance (LSPR) properties. By using a scattered-light dark-field microscopic imaging (iDFM) technique, the in situ KI/I2-treated etching processes of various shapes of AuNPs, including nanospheres (AuNSs), nanorods (AuNRs), and nanotrigonal prisms (AuNTs), were monitored in real time. It was found that the scattered light of the different shapes of AuNPs exhibited noticeable color changes upon exposure to the etching solution. The scattering spectra during the etching process showed obvious blue-shifts with decreasing scattered intensity owing to the oxidation of Au atoms into [AuI2]. Both finite-difference time-domain (FDTD) simulations and monitoring of morphological variations proved that the etching was a thermodynamic-dependent process through a chamfering mechanism coupled with layer-by-layer peeling, resulting in isotropic spheres with decreased particle sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ha, T. H.; Koo, H.-J.; Chung, B. H. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J. Phys. Chem. C 2007, 111, 1123–1130.

    Article  Google Scholar 

  2. Cho, E. C.; Xie, J. W.; Wurm, P. A.; Xia, Y. N. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 2009, 9, 1080–1084.

    Article  Google Scholar 

  3. Shen, Y. W.; Hsu, P. H.; Unnikrishnan, B.; Li, Y. J.; Huang, C. C. Membrane-based assay for iodide ions based on antileaching of gold nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 2576–2582.

    Article  Google Scholar 

  4. Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 2012, 134, 14542–14554.

    Article  Google Scholar 

  5. Rai, A.; Singh, A.; Ahmad, A.; Sastry, M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 2006, 22, 736–741.

    Article  Google Scholar 

  6. Wang, J.; Li, Y. F.; Huang, C. Z. Identification of iodineinduced morphological transformation of gold nanorods. J. Phys. Chem. C 2008, 112, 11691–11695.

    Article  Google Scholar 

  7. Cheng, W. L.; Dong, S. J.; Wang, E. K. Iodine-induced gold-nanoparticle fusion/fragmentation/aggregation and iodinelinked nanostructured assemblies on a glass substrate. Angew. Chem., Int. Ed. 2003, 42, 449–452.

    Article  Google Scholar 

  8. Jiang, Y. Y.; Zhu, G. M.; Lin, F.; Zhang, H.; Jin, C. H.; Yuan, J.; Yang, D. R.; Zhang, Z. In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett. 2014, 14, 3761–3765.

    Article  Google Scholar 

  9. Liu, Y. Z.; Lin, X. M.; Sun, Y. G.; Rajh, T. In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc. 2013, 135, 3764–3767.

    Article  Google Scholar 

  10. Liu, Y.; Huang, C. Z. Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@Hg nanoalloys. ACS Nano 2013, 7, 11026–11034.

    Article  Google Scholar 

  11. Smith, J. G.; Yang, Q.; Jain, P. K. Identification of a critical intermediate in galvanic exchange reactions by singlenanoparticle- resolved kinetics. Angew. Chem.,Int. Ed. 2014, 53, 2867–2872.

    Article  Google Scholar 

  12. Waldeisen, J. R.; Wang, T.; Ross, B. M.; Lee, L. P. Disassembly of a core-satellite nanoassembled substrate for colorimetric biomolecular detection. ACS Nano 2011, 5, 5383–5389.

    Article  Google Scholar 

  13. Lei, G.; Gao, P. F.; Liu, H.; Huang, C. Z. Real-time scattered light dark-field microscopic imaging of the dynamic degradation process of sodium dimethyldithiocarbamate. Nanoscale 2015, 7, 20709–20716.

    Article  Google Scholar 

  14. Zhang, L.; Li, Y.; Li, D. W.; Jing, C.; Chen, X. Y.; Lv, M.; Huang, Q.; Long, Y.-T.; Willner, I. Single gold nanoparticles as real-time optical probes for the detection of NADHdependent intracellular metabolic enzymatic pathways. Angew. Chem., Int. Ed. 2011, 50, 6789–6792.

    Article  Google Scholar 

  15. Zheng, X. X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W. J.; Wen, Y. Q.; He, Y.; Huang, Q.; Long, Y.-T. et al. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew. Chem., Int. Ed. 2011, 50, 11994–11998.

    Article  Google Scholar 

  16. Choi, I.; Song, H. D.; Lee, S.; Yang, Y. I.; Kang, T.; Yi, J. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex. J. Am. Chem. Soc. 2012, 134, 12083–12090.

    Article  Google Scholar 

  17. Li, Y.; Jing, C.; Zhang, L.; Long, Y.-T. Resonance scattering particles as biological nanosensors in vitro and in vivo. Chem. Soc. Rev. 2012, 41, 632–642.

    Article  Google Scholar 

  18. Shi, L.; Jing, C.; Ma, W.; Li, D.-W.; Halls, J. E.; Marken, F.; Long, Y.-T. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: Real-time monitoring of a click reaction. Angew. Chem., Int. Ed. 2013, 52, 6011–6014.

    Article  Google Scholar 

  19. Cui, M. H.; Liu, R. X.; Deng, Z. Y.; Ge, G. L.; Liu, Y.; Xie, L. M. Quantitative study of protein coronas on gold nanoparticles with different surface modifications. Nano Res. 2014, 7, 345–352.

    Article  Google Scholar 

  20. Jing, C.; Rawson, F. J.; Zhou, H.; Shi, X.; Li, W.-H.; Li, D.-W.; Long, Y.-T. New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. Anal. Chem. 2014, 86, 5513–5518.

    Article  Google Scholar 

  21. Liu, G. L.; Long, Y. T.; Choi, Y.; Kang, T.; Lee, L. P. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat. Methods 2007, 4, 1015–1017.

    Article  Google Scholar 

  22. Hurst, S. J.; Payne, E. K.; Qin, L. D.; Mirkin, C. A. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem., Int. Ed. 2006, 45, 2672–2692.

    Article  Google Scholar 

  23. Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011, 111, 3736–3827.

    Article  Google Scholar 

  24. Zou, B. Z.; Liu, Y.; Yan, X. L.; Huang, C. Z.Gold nanoparticles based digital color analysis for quinidine detection. Chin. Sci. Bull. 2013, 58, 2027–2031.

    Google Scholar 

  25. Zhang, C. Y.; Yeh, H. C.; Kuroki, M. T.; Wang, T. H. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 2005, 4, 826–831.

    Article  Google Scholar 

  26. Xiong, B.; Zhou, R.; Hao, J. R.; Jia, Y. H.; He, Y.; Yeung, E. S. Highly sensitive sulphide mapping in live cells by kinetic spectral analysis of single Au-Ag core-shell nanoparticles. Nat. Commun. 2013, 4, 1708.

    Article  Google Scholar 

  27. Zhang, C. Y.; Johnson, L. W. Single quantum-dot-based aptameric nanosensor for cocaine. Anal. Chem. 2009, 81, 3051–3055.

    Article  Google Scholar 

  28. Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201–7206.

    Article  Google Scholar 

  29. Bastus, N. G.; Comenge, J.; Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening. Langmui 2011, 27, 11098–11105.

    Article  Google Scholar 

  30. Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.

    Article  Google Scholar 

  31. Liu, Y.; Ling, J.; Huang, C. Z. Individually color-coded plasmonic nanoparticles for RGB analysis. Chem. Commun. 2011, 47, 8121–8123.

    Article  Google Scholar 

  32. Gao, P. F.; Yuan, B. F.; Gao, M. X.; Li, R. S.; Ma, J.; Zou, H. Y.; Li, Y. F.; Li, M.; Huang, C. Z. Visual identification of light-driven breakage of the silver-dithiocarbamate bond by single plasmonic nanoprobes. Sci. Rep. 2015, 5, 15427.

    Article  Google Scholar 

  33. Wanner, M.; Gerthsen, D. Corrosion of Au particles in airexposed NaI-treated Au colloidal suspensions. Colloid. Polym. Sci. 2004, 282, 1126–1132.

    Article  Google Scholar 

  34. Liu, Y.; Huang, C. Z. Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles. Nanoscale 2013, 5, 7458–7466.

    Article  Google Scholar 

  35. Green, T. A. Gold etching for microfabrication. Gold Bull. 2014, 47, 205–216.

    Article  Google Scholar 

  36. Cai, Q.; Lu, S. K.; Liao, F.; Li, Y. Q.; Ma, S. Z.; Shao, M. W. Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite. Nanoscale 2014, 6, 8117–8123.

    Article  Google Scholar 

  37. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Wang, Z. L.; Tian, Z. Q. et al. Shell-isolated nanoparticle-enhanced raman spectroscopy. Nature 2010, 464, 392–395.

    Article  Google Scholar 

  38. Willets, K. A. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 2014, 43, 3854–3864.

    Article  Google Scholar 

  39. Wang, Y.; Zou, H. Y.; Huang, C. Z. Real-time monitoring of oxidative etching on single Ag nanocubes via lightscattering dark-field microscopy imaging. Nanoscale 2015, 7, 15209–15213.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhi Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Gao, M., Lei, G. et al. Visually monitoring the etching process of gold nanoparticles by KI/I2 at single-nanoparticle level using scattered-light dark-field microscopic imaging. Nano Res. 9, 1125–1134 (2016). https://doi.org/10.1007/s12274-016-1007-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1007-z

Keywords

Navigation