Skip to main content
Log in

Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

New types of antimicrobial systems are urgently needed owing to the emergence of pathogenic microbial strains that gain resistance to antibiotics commonly used in daily life and medical care. In this study, we developed for the first time a broad-spectrum and robust antimicrobial thin film coating based on large-area chemical vapor deposition (CVD)-grown graphene-wrapped silver nanowires (AgNWs). The antimicrobial graphene/AgNW hybrid coating can be applied on commercial flexible transparent ethylene vinyl acetate/ polyethylene terephthalate (EVA/PET) plastic films by a full roll-to-roll process. The graphene/AgNW hybrid coating showed broad-spectrum antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus), and fungi (Candida albicans). This effect was attributed to a weaker microbial attachment to the ultra-smooth graphene film and the sterilization capacity of Ag+, which is sustainably released from the AgNWs and presumably enhanced by the electrochemical corrosion of AgNWs. Moreover, the robust antimicrobial activity of the graphene/AgNW coating was reinforced by AgNW encapsulation by graphene. Furthermore, the antimicrobial efficiency could be enhanced to ~100% by water electrolysis by using the conductive graphene/AgNW coating as a cathode. We developed a transparent and flexible antimicrobial cover made of graphene/AgNW/EVA/PET and an antimicrobial denture coated by graphene/ AgNW, to show the potential applications of the antimicrobial materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Irwansyah, I.; Li, Y. Q.; Shi, W. X.; Qi, D. P.; Leow, W. R.; Tang, M. B. Y.; Li, S. Z.; Chen, X. D. Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv. Mater. 2015, 27, 648–654.

    Article  Google Scholar 

  2. Yang, C.; Ding, X.; Ono, R. J.; Lee, H.; Hsu, L. Y.; Tong, Y. W.; Hedrick, J.; Yang, Y. Y. Brush-like polycarbonates containing dopamine, cations, and PEG providing a broadspectrum, antibacterial, and antifouling surface via one-step coating. Adv. Mater. 2014, 26, 7346–7351.

    Article  Google Scholar 

  3. Aviv, M.; Berdicevsky, I.; Zilberman, M. Gentamicin-loaded bioresorbable films for prevention of bacterial infections associated with orthopedic implants. J. Biomed. Mater. Res. A 2007, 83, 10–19.

    Article  Google Scholar 

  4. Gao, P.; Nie, X.; Zou, M. J.; Shi, Y. J.; Cheng, G. Recent advances in materials for extended-release antibiotic delivery system. J. Antibiot. 2011, 64, 625–634.

    Article  Google Scholar 

  5. Fischbach, M. A.; Walsh, C. T. Antibiotics for emerging pathogens. Science 2009, 325, 1089–1093.

    Article  Google Scholar 

  6. Huh, A. J.; Kwon, Y. J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Controlled Release 2011, 156, 128–145.

    Article  Google Scholar 

  7. Zhu, C. L.; Yang, Q.; Liu, L. B.; Lv, F. T.; Li, S. Y.; Yang, G. Q.; Wang, S. Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells. Adv. Mater. 2011, 23, 4805–4810.

    Article  Google Scholar 

  8. Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353.

    Article  Google Scholar 

  9. Kumar, A.; Vemula, P. K.; Ajayan, P. M.; John, G. Silvernanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater.2008, 7, 236–241.

  10. Kvitek, L.; Panacek, A.; Soukupova, J.; Kolar, M.; Vecerova, R.; Prucek, R.; Holecova, M.; Zboril, R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C 2008, 112, 5825–5834.

    Article  Google Scholar 

  11. Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720.

    Article  Google Scholar 

  12. Schoen, D. T.; Schoen, A. P.; Hu, L. B.; Kim, H. S.; Heilshorn, S. C.; Cui, Y. High speed water sterilization using one-dimensional nanostructures. Nano Lett. 2010, 10, 3628–3632.

    Article  Google Scholar 

  13. Nateghi, M. R.; Shateri-Khalilabad, M. Silver nanowirefunctionalized cotton fabric. Carbohydr. Polym. 2015, 117, 160–168.

    Article  Google Scholar 

  14. Visnapuu, M.; Joost, U.; Juganson, K.; Künnis-Beres, K.; Kahru, A.; Kisand, V.; Ivask, A. Dissolution of silver nanowires and nanospheres dictates their toxicity to Escherichia coli. BioMed Res. Int. 2013, 2013, Article ID819252.

    Google Scholar 

  15. Tang, C. L.; Sun, W.; Lu, J. M.; Yan, W. Role of the anions in the hydrothermally formed silver nanowires and their antibacterial property. J. Colloid Interface Sci. 2014, 416, 86–94.

    Article  Google Scholar 

  16. Natalio, F.; André, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530–535.

    Article  Google Scholar 

  17. Magrez, A.; Kasas, S.; Salicio, V.; Pasquier, N.; Seo, J. W.; Celio, M.; Catsicas, S.; Schwaller, B.; Forró, L. Cellular toxicity of carbon-based nanomaterials. Nano Lett. 2006, 6, 1121–1125.

    Article  Google Scholar 

  18. Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.; Sun, X. M.; Dai, H. J.; Gambhir, S. S. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 2008, 3, 216–221.

    Google Scholar 

  19. Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323.

    Article  Google Scholar 

  20. Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736.

    Article  Google Scholar 

  21. Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980.

    Article  Google Scholar 

  22. Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601.

    Article  Google Scholar 

  23. Pham, V. T. H.; Truong, V. K.; Quinn, M. D. J.; Notley, S. M.; Guo, Y. C.; Baulin, V. A.; Kobaisi, M. A.; Crawford, R. J.; Ivanova, E. P. Graphene induces formation of pores that kill spherical and rod-shaped bacteria. ACS Nano 2015, 9, 8458–8467.

    Article  Google Scholar 

  24. LeOuay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354.

    Article  Google Scholar 

  25. Lemire, J. A.; Harrison, J. J.; Turner, R. J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384.

    Article  Google Scholar 

  26. Rizzello, L.; Pompa, P. P. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Rev. 2014, 43, 1501–1518.

    Article  Google Scholar 

  27. Lok, C. N.; Ho, C. M.; Chen, R.; He, Q. Y.; Yu, W. Y.; Sun, H.; Tam, P. K. H.; Chiu, J. F.; Che, C. M. Silver nanoparticles: Partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007, 12, 527–534.

    Article  Google Scholar 

  28. Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271–4275.

    Article  Google Scholar 

  29. Reinsch, B. C.; Levard, C.; Li, Z.; Ma, R.; Wise, A.; Gregory, K. B.; Brown, G. E.; Lowry, G. V. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ. Sci. Technol. 2012, 46, 6992–7000.

    Article  Google Scholar 

  30. Levard, C.; Mitra, S.; Yang, T.; Jew, A. D.; Badireddy, A. R.; Lowry, G. V.; Brown, G. E. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ. Sci. Technol. 2013, 47, 5738–5745.

    Article  Google Scholar 

  31. Xu, W. P.; Zhang, L. C.; Li, J. P.; Lu, Y.; Li, H. H.; Ma, Y. N.; Wang, W. D.; Yu, S. H. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J. Mater. Chem. 2011, 21, 4593–4597.

    Article  Google Scholar 

  32. Ma, J. Z.; Zhang, J. T.; Xiong, Z. G.; Yong, Y.; Zhao, X. S. Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J. Mater. Chem. 2011, 21, 3350–3352.

    Article  Google Scholar 

  33. Kholmanov, I. N.; Stoller, M. D.; Edgeworth, J.; Lee, W. H.; Li, H. F.; Lee, J. H.; Barnhart, C.; Potts, J. R.; Piner, R.; Akinwande, D. et al. Nanostructured hybrid transparent conductive films with antibacterial properties. ACS Nano 2012, 6, 5157–5163.

    Article  Google Scholar 

  34. Li, C.; Wang, X. S.; Chen, F.; Zhang, C. L.; Zhi, X.; Wang, K.; Cui, D. X. The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials 2013, 34, 3882–3890.

    Article  Google Scholar 

  35. Li, J. H.; Wang, G.; Zhu, H. Q.; Zhang, M.; Zheng, X. H.; Di, Z. F.; Liu, X. Y.; Wang, X. Antibacterial activity of largearea monolayer graphene film manipulated by charge transfer. Sci. Rep. 2014, 4, 4359.

    Google Scholar 

  36. Dellieu, L.; Lawaré e, E.; Reckinger, N.; Didembourg, C.; Letesson, J. J.; Sarrazin, M.; Deparis, O.; Matroule, J. Y.; Deparis, J. F. Do CVD grown graphene films have antibacterial activity on metallic substrates? Carbon 2015, 84, 310–316.

    Article  Google Scholar 

  37. Chen, R. Y.; Das, S. R.; Jeong, C.; Khan, M. R.; Janes, D. B.; Alam, M. A. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv. Funct. Mater. 2013, 23, 5150–5158.

    Article  Google Scholar 

  38. Lee, M. S.; Lee, K.; Kim, S. Y.; Lee, H.; Park, J.; Choi, K. H.; Kim, H. K.; Kim, D. G.; Lee, D. Y.; Nam, S. et al. Highperformance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 2013, 13, 2814–2821.

    Article  Google Scholar 

  39. Deng, B.; Hsu, P. C.; Chen, G. C.; Chandrashekar, B. N.; Liao, L.; Ayitimuda, Z.; Wu, J. X.; Guo, Y. F.; Lin, L.; Zhou, Y. et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 2015, 15, 4206–4213.

    Article  Google Scholar 

  40. Lee, G. H.; Cooper, R. C.; An, S. J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerherg, A. G.; Lee, C.; Crawford, B.; Oliver, W. et al. High-strength chemical-vapor deposited graphene and grain boundaries. Science 2013, 340, 1073–1076.

    Article  Google Scholar 

  41. O’Hern, S. C.; Stewart, C. A.; Boutilier, M. S. H.; Idrobo, J. C.; Bhaviripudi, S.; Das, S. K.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 2012, 6, 10130–10138.

    Article  Google Scholar 

  42. Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surfaceenhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229–1233.

    Article  Google Scholar 

  43. An, Y. H.; Friedman, R. J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 1998, 43, 338–348.

    Article  Google Scholar 

  44. Mcallister, E. W.; Carey, L. C.; Brady, P. G.; Heller, R.; Kovacs, S. G. The role of polymeric surface smoothness of biliary stents in bacterial adherence, biofilm deposition, and stent occlusion. Gastrointest. Endosc. 1993, 39, 422–425.

    Article  Google Scholar 

  45. Quirynen, M.; van der Mei, H. C.; Bollen, C. M. L.; Schotte, A.; Marechal, M.; Doornbusch, G. I.; Naert, I.; Busscher, H. J.; van Steenberghe, D. An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. J. Dent. Res. 1993, 72, 1304–1309.

    Article  Google Scholar 

  46. Hogt, A. H.; Dankert, J.; DeVries, J. A.; Feijen, J. Adhesion of coagulase-negative staphylococci to biomaterials. J. Gen. Microbiol. 1983, 129, 2959–2968.

    Google Scholar 

  47. Ludwicka, A.; Jansen, B.; Wadströ m, T.; Pulverer, G. Attachment of staphylococci to various syntheticpolymers. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 1984, 256, 479–489.

    Google Scholar 

  48. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  49. Taherian, F.; Marcon, V.; van der Vegt, N. F. A.; Leroy, F. What is the contact angle of water on graphene? Langmuir 2013, 29, 1457–1465.

    Article  Google Scholar 

  50. Schriver, M.; Regan, W.; Gannett, W. J.; Zaniewski, A. M.; Crommie, M. F.; Zettl, A. Graphene as a long-term metal oxidation barrier: Worse than nothing. ACS Nano 2013, 7, 5763–5768.

    Article  Google Scholar 

  51. Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036.

    Article  Google Scholar 

  52. Zhou, M.; Zhai, Y. M.; Dong, S. J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613.

    Article  Google Scholar 

  53. Li, P.; Zhou, C. C.; Rayatpisheh, S.; Ye, K.; Poon, Y. F.; Hammond, P. T.; Duan, H. W.; Chan-Park, M. B. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv. Mater. 2012, 24, 4130–4137.

    Article  Google Scholar 

  54. Kholmanov, I. N.; Magnuson, C. W.; Aliev, A. E.; Li, H. F.; Zhang, B.; Suk, J. W.; Zhang, L. L.; Peng, E.; Mousavi, S. H.; Khanikaev, A. B. et al. Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 2012, 12, 5679–5683.

    Article  Google Scholar 

  55. Lv, M.; Su, S.; He, Y.; Huang, Q.; Hu, W. B.; Li, D.; Fan, C. H.; Lee, S. T. Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv. Mater. 2010, 22, 5463–5467.

    Article  Google Scholar 

  56. Christensen, F. M.; Johnston, H. J.; Stone, V.; Aitken, R. J.; Hankin, S.; Peters, S.; Aschberger, K. Nano-silver-feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 2010, 4, 284–295.

    Article  Google Scholar 

  57. Bakhshi, M.; Taheri, J. B.; Shabestari, S. B.; Tanik, A.; Pahlevan, R. Comparison of therapeutic effect of aqueous extract of garlic and nystatin mouthwash in denture stomatitis. Gerodontology 2012, 29, e680–e684.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailin Peng or Zhimin Yan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Deng, B., Chen, G. et al. Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Res. 9, 963–973 (2016). https://doi.org/10.1007/s12274-016-0984-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-0984-2

Keywords

Navigation