Skip to main content
Log in

Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti3+ as conduction pathways

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

PX-phase PbTiO3 (PT) nanowires with open channels running along the length direction have been investigated as an anode material for lithium ion batteries. This material shows a stabilized reversible specific capacity of about 410 mAh·g–1 up to 200 cycles with a charge/discharge voltage plateau of around 0.3–0.65 V. In addition, it exhibits superior high-rate performance, with 90% and 77% capacity retention observed at 1 and 2 A·g–1, respectively. At a very high current rate of 10 A·g–1, a specific capacity of over 170 mAh·g–1 is retained up to 100 cycles, significantly outperforming the rate capability reported for Pb and Pb oxides. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses along with the cyclic voltammogram results reveal that the PX-phase PT nanowires undergo irreversible structural amorphization and reduction reactions during the initial cycle, which allow them to transform into a composite structure composed of 2–5 nm Pb nanoparticles uniformly dispersed in the 1D amorphous Li2O·TiO2·LiTiO2 matrix. In this composite structure, the presence of abundant amounts of Ti3+ in both the charged and discharged states enhances the electrical conductance of the system, whereas the presence of ultrafine Pb nanoparticles imparts high reversible capacity. The structurally stable TiO2-based amorphous matrix can also considerably buffer the volume variation during the charge/discharge process, thereby facilitating extremely stable cycling performance. This compound combines the high specific capacity of Pb-based materials and the good rate capability of Ti3+-based wiring. Our results might furnish a possible route for achieving superior cycling and rate performance and contribute towards the search for next-generation anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  2. Park, D.-Y.; Sun, Y.-K.; Myung, S.-T. Carbothermal synthesis of molybdenum(IV) oxide as a high rate anode for rechargeable lithium batteries. J. Power Sources 2015, 280, 1–4.

    Article  Google Scholar 

  3. Liang, J. W.; Li, X. N.; Zhu, Y. C.; Guo, C.; Qian, Y. T. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res. 2015, 8, 1497–1504.

    Article  Google Scholar 

  4. Im, H. S.; Cho, Y. J.; Lim, Y. R.; Jung, C. S.; Jang, D. M.; Park, J.; Shojaei, F.; Kang, H. S. Phase evolution of tin nanocrystals in lithium ion batteries. ACS Nano 2013, 7, 11103–11111.

    Article  Google Scholar 

  5. Chen, M. H.; Liu, J. L.; Chao, D. L.; Wang, J.; Yin, J. H.; Lin, J. Y.; Fan, H. J.; Shen, Z. X. Porous a-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy 2014, 9, 364–372.

    Article  Google Scholar 

  6. Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2009, 2, 818–837.

    Article  Google Scholar 

  7. Plylahan, N.; Letiche, M.; Samy Barr, M. K.; Ellis, B.; Maria, S.; Phan, T. N. T.; Bloch, E.; Knauth, P.; Djenizian, T. High energy and power density TiO2 nanotube electrodes for single and complete lithium-ion batteries. J. Power Sources 2015, 273, 1182–1188.

    Article  Google Scholar 

  8. Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794–803.

    Article  Google Scholar 

  9. Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

    Article  Google Scholar 

  10. Li, H.; Wang, Z. X.; Chen, L. Q. Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater. 2009, 21, 4593–4607.

    Article  Google Scholar 

  11. Konstantinov, K.; Ng, S. H.; Wang, J. Z.; Wang, G. X.; Wexler, D.; Liu, H. K. Nanostructured PbO materials obtained in situ by spray solution technique for Li-ion batteries. J. Power Sources 2006, 159, 241–244.

    Article  Google Scholar 

  12. Pan, Q. M.; Wang, Z. J.; Liu, J.; Yin, G. P.; Gu, M. PbO@C core–shell nanocomposites as an anode material of lithiumion batteries. Electrochem. Commun. 2009, 11, 917–920.

    Google Scholar 

  13. Martos, M.; Morales, J.; Sánchez, L. Lead-based systems as suitable anode materials for Li-ion batteries. Electrochim. Acta 2003, 48, 615–621.

    Article  Google Scholar 

  14. Wang, J.; Schenk, K.; Carvalho, A.; Wylie-van Eerd, B.; Trodahl, J.; Sandu, C. S.; Bonin, M. Gregora, I.; He, Z. B.; Yamada, T. et al. Structure determination and compositional modification of body-centered tetragonal PX-phase lead titanate. Chem. Mater. 2011, 23, 2529–2535.

    Article  Google Scholar 

  15. Yu, X. Y.; Wu, H. B.; Yu, L.; Ma, F. X.; Lou, X. W. Rutile TiO2 submicroboxes with superior lithium storage properties. Angew. Chem., Int. Ed. 2015, 54, 4001–4004.

    Article  Google Scholar 

  16. Tian, M.; Wang, W.; Liu, Y.; Jungjohann, K. L.; Thomas Harris, C.; Lee, Y.-C.; Yang, R. G. A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy 2015, 11, 500–509.

    Article  Google Scholar 

  17. Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

    Article  Google Scholar 

  18. Henningsson, A.; Rensmo, H.; Sandell, A.; Siegbahn, H.; Södergren, S.; Lindström, H.; Hagfeldt, A. Electronic structure of electrochemically Li-inserted TiO2 studied with synchrotron radiation electron spectroscopies. J. Chem. Phys. 2003, 118, 5607–5612.

    Article  Google Scholar 

  19. Li, X. H.; He, Y. B.; Miao, C.; Qin, X. Y.; Lv, W.; Du, H. D.; Li, B. H.; Yang, Q. H.; Kang, F. Y. Carbon coated porous tin peroxide/carbon composite electrode for lithium-ion batteries with excellent electrochemical properties. Carbon 2015, 81, 739–747.

    Article  Google Scholar 

  20. Ohzuku, T.; Shimamoto, T.; Hirai, T. Lead oxides as cathode for lithium non-aqueous cells. Electrochim. Acta 1981, 26, 751–754.

    Google Scholar 

  21. Kim, K.-T.; Yu, C.-Y.; Kim, S.-J.; Sun, Y.-K.; Myung, S.-T. Carbon-coated anatase titania as a high rate anode for lithium batteries. J. Power Sources 2015, 281, 362–369.

    Article  Google Scholar 

  22. Myung, S. T.; Takahashi, N.; Komaba, S.; Yoon, C. S.; Sun, Y. K.; Amine, K.; Yashiro, H. Nanostructured TiO2 and its application in lithium-ion storage. Adv. Funct. Mater. 2011, 21, 3231–3241.

    Article  Google Scholar 

  23. Liu, S. H.; Jia, H. P.; Han, L.; Wang, J. L.; Gao, P. F.; Xu, D. D.; Yang, J.; Che, S. N. Nanosheet-constructed porous TiO2–B for advanced lithium ion batteries. Adv. Mater. 2012, 24, 3201–3204.

    Article  Google Scholar 

  24. Menéndez, R.; Alvarez, P.; Botas, C.; Nacimiento, F.; Alcántara, R.; Tirado, J. L.; Ortiz, G. F. Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries. J. Power Sources 2014, 248, 886–893.

    Article  Google Scholar 

  25. Hegde, R. I.; Sainkar, S. R.; Badrinarayanan, S.; Sinha, A. P. B. A study of dilute tin alloys by X-ray photoelectron spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 1981, 24, 19–25.

    Article  Google Scholar 

  26. Dementjev, A. P.; Ivanova, O. P.; Vasilyev, L. A.; Naumkin, A. V.; Nemirovsky, D. M.; Shalaev, D. Y. Altered layer as sensitive initial chemical state indicator. J. Vac. Sci. Technol. A 1994, 12, 423–425.

    Article  Google Scholar 

  27. Bach, S.; Pereira-Ramos, J. P.; Willman, P. Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy. Electrochim. Acta 2010, 55, 4952–4959.

    Article  Google Scholar 

  28. Gao, Q.; Gu, M.; Nie, A. M.; Mashayek, F.; Wang, C. M.; Odegard, G. M.; Shahbazian-Yassar, R. Direct evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes. Chem. Mater. 2014, 26, 1660–1669.

    Article  Google Scholar 

  29. Chen, Z. X.; Cao, Y. L.; Qian, J. F.; Ai, X. P.; Yang, H. X. Pb-sandwiched nanoparticles as anode material for lithiumion batteries. J Solid State Electr. 2012, 16, 291–295.

    Article  Google Scholar 

  30. Shu, J.; Ma, R.; Shao, L. Y.; Shui, M.; Wang, D. J.; Wu, K. G.; Long, N. B.; Ren, Y. L. Hydrothermal fabrication of lead hydroxide chloride as a novel anode material for lithiumion batteries. Electrochim. Acta 2013, 102, 381–387.

    Article  Google Scholar 

  31. Wang, D. J.; Wu, K. Q.; Shao, L. Y.; Shui, M.; Ma, R.; Lin, X. T.; Long, N. B.; Ren, Y. L.; Shu, J. Facile fabrication of Pb(NO3)2/C as advanced anode material and its lithium storage mechanism. Electrochim. Acta 2014, 120, 110–121.

    Article  Google Scholar 

  32. Wood, S. M.; Powell, E. J.; Heller, A.; Mullins, C. B. Lithiation and delithiation of lead sulfide (PbS). J. Electrochem. Soc. 2015, 162, A1182–A1185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Wang, J., Wang, W. et al. Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti3+ as conduction pathways. Nano Res. 9, 353–362 (2016). https://doi.org/10.1007/s12274-015-0914-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0914-8

Keywords

Navigation