Skip to main content
Log in

An efficient and surface-benign purification scheme for colloidal nanocrystals based on quantitative assessment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

General application of “greener methods” to the synthesis of monodisperse colloidal nanocrystals introduces impurities, including metal carboxylate precursors, non-volatile solvents, free ligands, and non-nanocrystalline side products. These impurities seriously diminish the solution processability and potential applications of colloidal nanocrystals. A protocol was established for evaluating purification schemes. The results revealed that commonly applied purification schemes and their variants do not exhibit a high level of performance and may degrade the ligand surface coverage. A new scheme involving chloroform–acetonitrile precipitation quantitatively removed all impurities from colloidal solutions of CdSe and CdS nanocrystals coated with a variety of carboxylate ligands. The new scheme was benign to the surface structure of nanocrystal-ligands complexes and resulted in each nanocrystal bearing a close-packed monolayer of carboxylate ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

    Article  Google Scholar 

  2. Weller, H. Colloidal semiconductor Q-particles: Chemistry in the transition region between solid-state and molecules. Angew. Chem., Int. Ed. 1993, 32, 41–53.

    Article  Google Scholar 

  3. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

    Article  Google Scholar 

  4. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and closepacked nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

    Article  Google Scholar 

  5. Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

    Article  Google Scholar 

  6. Bronstein, L. M.; Huang, X. L.; Retrum, J.; Schmucker, A.; Pink, M.; Stein, B. D.; Dragnea, B. Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem. Mater. 2007, 19, 3624–3632.

    Article  Google Scholar 

  7. Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 15081–15086.

    Article  Google Scholar 

  8. Ji, X. H.; Copenhaver, D.; Sichmeller, C.; Peng, X. G. Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 5726–5735.

    Article  Google Scholar 

  9. Morris-Cohen, A. J.; Donakowski, M. D.; Knowles, K. E.; Weiss, E. A. The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide. J. Phys. Chem. C 2010, 114, 897–906.

    Article  Google Scholar 

  10. Fritzinger, B.; Capek, R. K.; Lambert, K.; Martins, J. C.; Hens, Z. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots. J. Am. Chem. Soc. 2010, 132, 10195–10201.

    Article  Google Scholar 

  11. Hassinen, A.; Moreels, I.; Nolf, K. D.; Smet, P. F.; Martins, J. C.; Hens, Z. Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. J. Am. Chem. Soc. 2012, 134, 20705–20712.

    Article  Google Scholar 

  12. Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metalcarboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536–18548.

    Article  Google Scholar 

  13. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    Article  Google Scholar 

  14. Peng, X. G. Band gap and composition engineering on a nanocrystal (BCEN) in solution. Acc. Chem. Res. 2010, 43, 1387–1395.

    Article  Google Scholar 

  15. Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800–803.

    Article  Google Scholar 

  16. Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

    Article  Google Scholar 

  17. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    Article  Google Scholar 

  18. Klimov, V. I.,; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H.-J.; Bawwendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317.

    Article  Google Scholar 

  19. Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471.

    Article  Google Scholar 

  20. Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119, 7019–7029.

    Article  Google Scholar 

  21. Heine, J. R.; Rodriguez-Viejo, J.; Bawendi, M. G.; Jensen, K. F. Synthesis of CdSe quantum dot–ZnS matrix thin films via electrospray organometallic chemical vapor deposition. J. Cryst. Growth 1998, 195, 564–568.

    Article  Google Scholar 

  22. Li, Z.; Ji, Y. J.; Xie, R. G.; Grisham, S. Y.; Peng, X. G. Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development. J. Am. Chem. Soc. 2011, 133, 17248–17256.

    Article  Google Scholar 

  23. Nan, W. N.; Niu, Y.; Qin, H. Y.; Cui, F.; Yang, Y.; Lai, R. C.; Lin, W. Z.; Peng, X. G. Crystal structure control of zincblende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 2012, 134, 19685–19693.

    Article  Google Scholar 

  24. Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. H. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 2007, 129, 6974–6975.

    Article  Google Scholar 

  25. Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. H. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem., Int. Ed. 2008, 47, 3588–3591.

    Article  Google Scholar 

  26. Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902–8903.

    Article  Google Scholar 

  27. Li, P., Peng, Q.; Li, Y. D. Controlled synthesis and selfassembly of highly monodisperse Ag and Ag2S nanocrystals. Chem.—Eur. J. 2011, 17, 941–946.

    Article  Google Scholar 

  28. O’Brien, S.; Brus, L.; Murray, C. B. Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 2001, 123, 12085–12086.

    Article  Google Scholar 

  29. Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 2001, 123, 12798–12801.

    Article  Google Scholar 

  30. Jana, N. R.; Chen, Y. F.; Peng, X. G. Size- and shapecontrolled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16, 3931–3935.

    Article  Google Scholar 

  31. Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J. H.; Hwang, N.-M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

    Article  Google Scholar 

  32. Lin, F.-H.; Chen, W.; Liao, Y.-H.; Doong, R.-A.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223–1232.

    Article  Google Scholar 

  33. Pu, C. D.; Zhou, J. H.; Lai, R. C.; Niu, Y.; Nan, W. N.; Peng, X. G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Res. 2013, 6, 652–670.

    Article  Google Scholar 

  34. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

    Article  Google Scholar 

  35. Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

    Article  Google Scholar 

  36. Flamee, S.; Cirillo, M.; Abe, S.; Nolf, K. D.; Gomes, R.; Aubert, T.; Hens, Z. Fast, high yield, and high solid loading synthesis of metal selenide nanocrystals. Chem. Mater. 2013, 25, 2476–2483.

    Article  Google Scholar 

  37. Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368–2371.

    Article  Google Scholar 

  38. Li, J. J.; Wang, A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using airstable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.

    Article  Google Scholar 

  39. Narayanaswamy, A.; Xu, H. F.; Pradhan, N.; Kim, M.; Peng, X. G. Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: Hydrolysis and alcoholysis vs pyrolysis. J. Am. Chem. Soc. 2006, 128, 10310–10319.

    Article  Google Scholar 

  40. Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

    Article  Google Scholar 

  41. Lin, S. L.; Pradhan, N.; Wang, Y. J.; Peng, X. G. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4, 2261–2264.

    Article  Google Scholar 

  42. Peng, X. G.; Guan, S. Q.; Chai, X. D.; Jiang, Y. S.; Li, T. J. Preparation and structure of Q-state lead sulfide monolayers in metastable stearic-acid Langmuir-Blodgett-films. J. Phys. Chem. 1992, 96, 3170–3174.

    Article  Google Scholar 

  43. Morris-Cohen, A. J.; Frederick, M. T.; Lilly, G. D.; McArthur, E. A.; Weiss, E. A. Organic surfactant-controlled composition of the surfaces of CdSe quantum dots. J. Phys. Chem. Lett. 2010, 1, 1078–1081.

    Article  Google Scholar 

  44. Ankireddy, K.; Vunnam, S.; Kellar, J.; Cross, W. Highly conductive short chain carboxylic acid encapsulated silver nanoparticle based inks for direct write technology applications. J. Mater. Chem. C 2013, 1, 572–579.

    Article  Google Scholar 

  45. Hens, Z.; Martins, J. C. A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals. Chem. Mater. 2013, 25, 1211–1221.

    Article  Google Scholar 

  46. Kim, W.; Lim, S. J.; Jung, S.; Shin, S. K. Binary aminephosphine passivation of surface traps on CdSe nanocrystals. J. Phys. Chem. C 2010, 114, 1539–1546.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Peng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, J., Lin, L. et al. An efficient and surface-benign purification scheme for colloidal nanocrystals based on quantitative assessment. Nano Res. 8, 3353–3364 (2015). https://doi.org/10.1007/s12274-015-0835-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0835-6

Keywords

Navigation