Skip to main content
Log in

Ultrafast photoinduced dynamics in quantum dot-based systems for light harvesting

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Colloidal semiconductor nanocrystals, referred to as quantum dots, offer simple low-temperature solution-based methods for constructing optoelectronic devices such as light emitting diodes and solar cells. We review recent progress in the understanding of photoinduced processes in key components of a certain type of quantum dot solar cells where the dots sensitize a suitable metal oxide, such as ZnO or TiO2, for electron injection, and NiO for hole injection. The electron and hole injection dynamics are discussed in detail as a function of the quantum dot size and core-shell structure, the linker molecule type, and the morphology of the accepting metal oxide. Hole trapping is identified as a major factor limiting the performance of quantum dot-based devices. We review possible strategies for improvement that use core-shell structures and directed excitation energy transfer between quantum dots. Finally, the generation and injection of multiple excitons are revisited. We show that the assumption of a linear relationship between the intensity of transient absorption signal and the number of excitons does not generally hold, and this observation can partially explain highly disparate results for the efficiency of generating multiple excitons. A consistent calculation procedure for studies of multiple exciton generation is provided. Finally, we offer a brief personal outlook on the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leutwyler, W.K.; Bürgi, S.L.; Burgl, H. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

    Google Scholar 

  2. Murray, C.B.; Kagan, C.R.; Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystals and closepacked nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

    Google Scholar 

  3. Scholes, G.D. Selection rules for probing biexcitons and electron spin transitions in isotropic quantum dot ensembles. J. Chem. Phys. 2004, 121, 10104–10110.

    Google Scholar 

  4. Prabhakaran, P.; Kim, W.J.; Lee, K.S.; Prasad, P.N. Quantum dots (QDs) for photonic applications. Opt. Mater. Express 2012, 2, 578.

    Google Scholar 

  5. Zrazhevskiy, P.; Gao, X.H. Quantum dot imaging platform for single-cell molecular profiling. Nat. Commun. 2013, 4, 1619.

    Google Scholar 

  6. Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S.; Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 2002, 295, 1506–1508.

    Google Scholar 

  7. Kamat, P.V. Quantum dot solar cells. The next big thing in photovoltaics. J. Phys. Chem. Lett. 2013, 4, 908–918.

    Google Scholar 

  8. Kramer, I.J.; Sargent, E.H. The architecture of colloidal quantum dot solar cells: Materials to devices. Chem. Rev. 2014, 114, 863–882.

    Google Scholar 

  9. Klimov, V.I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673.

    Google Scholar 

  10. Ross, R.T.; Nozik, A.J. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 1982, 53, 3813–3818.

    Google Scholar 

  11. Chuang, C.H. M.; Brown, P.R.; Bulovic, V.; Bawendi, M.G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

    Google Scholar 

  12. Kietzmann, R.; Willig, F.; Weller, H.; Vogel, R.; Nath, D.N.; Eichberger, R.; Liska, P.; Lehnert, J. Picosecond time resolved electron injection from excited cresyl violet monomers and Cd3P2 quantum dots into TiO2. Mol. Cryst. Liq. Cryst. 2006, 194, 169–180.

    Google Scholar 

  13. Robel, I.; Kuno, M.; Kamat, P.V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137.

    Google Scholar 

  14. Guijarro, N.; Shen, Q.; Giménez, S.; Mora-Seró, I.; Bisquert, J.; Lana-Villarreal, T.; Toyoda, T.; Gómez, R. Direct correlation between ultrafast injection and photoanode performance in quantum dot sensitized solar cells. J. Phys. Chem. C 2010, 114, 22352–22360.

    Google Scholar 

  15. Abdellah, M.; Žídek, K.; Zheng, K.B.; Chábera, P.; Messing, M.E.; Pullerits, T. balancing electron transfer and surface passivation in gradient CdSe/ZnS core–shell quantum dots attached to ZnO. J. Phys. Chem. Lett. 2013, 4, 1760–1765.

    Google Scholar 

  16. Tvrdy, K.; Frantsuzov, P. A; Kamat, P.V. photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. U.S. A. 2011, 108, 29–34.

    Google Scholar 

  17. Leschkies, K.S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J.E.; Carter, C.B.; Kortshagen, U.R.; Norris, D.J.; Aydil, E.S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 2007, 7, 1793–1798.

    Google Scholar 

  18. Tisdale, W. A; Zhu, X.Y. Surface chemistry special feature: Artificial atoms on semiconductor surfaces. Proc. Natl. Acad. Sci. U.S. A. 2011, 108, 965–970.

    Google Scholar 

  19. Blackburn, J.L.; Selmarten, D.C.; Nozik, A.J. Electron transfer dynamics in quantum dot/titanium dioxide composites formed by in situ chemical bath deposition. J. Phys. Chem. B 2003, 107, 14154–14157.

    Google Scholar 

  20. Klimov, V.I. Nanocrystal Quantum Dots; Klimov, V.I., Ed.; CRC Press, 2010.

  21. Pattantyus-Abraham, A.G.; Kramer, I.J.; Barkhouse, A.R.; Wang, X.H.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M.K.; Grätzel, M.; Sargent, E.H. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 2010, 4, 3374–3380.

    Google Scholar 

  22. Yang, Y.; Rodríguez-Córdoba, W.; Xiang, X.; Lian, T.Q. Strong electronic coupling and ultrafast electron transfer between PbS quantum dots and TiO2 nanocrystalline films. Nano Lett. 2012, 12, 303–309.

    Google Scholar 

  23. Tisdale, W. A; Williams, K.J.; Timp, B. A; Norris, D.J.; Aydil, E.S.; Zhu, X.Y. Hot-electron transfer from semiconductor nanocrystals. Science 2010, 328, 1543–1547.

    Google Scholar 

  24. Luther, J.M.; Beard, M.C.; Song, Q.; Law, M.; Ellingson, R.J.; Nozik, A.J. Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 2007, 7, 1779–1784.

    Google Scholar 

  25. Žídek, K.; Zheng, K.B.; Ponseca, C.S.; Messing, M.E.; Wallenberg, L.R.; Chábera, P.; Abdellah, M.; Sundström, V.; Pullerits, T.; Zídek, K. Electron transfer in quantum-dotsensitized zno nanowires: ultrafast time-resolved absorption and terahertz study. J. Am. Chem. Soc. 2012, 134, 12110–12117.

    Google Scholar 

  26. Leatherdale, C.A.; Bawendi, M.G. Observation of solvatochromism in CdSe colloidal quantum dots. Phys. Rev. B 2001, 63, 165315.

    Google Scholar 

  27. Zídek, K.; Abdellah, M.; Zheng, K.B.; Pullerits, T. Electron relaxation in the CdSe quantum dot-ZnO composite: Prospects for photovoltaic applications. Sci. Rep. 2014, 4, 7244.

    Google Scholar 

  28. Žídek, K.; Zheng, K.B.; Abdellah, M.; Chábera, P.; Pullerits, T.; Tachyia, M. Simultaneous creation and recovery of trap states on quantum dots in a photoirradiated CdSe-ZnO system. J. Phys. Chem. C 2014, 118, 27567–27573.

    Google Scholar 

  29. Žídek, K.; Zheng, K.B.; Chábera, P.; Abdellah, M.; Pullerits, T. Quantum dot photodegradation due to CdSe-ZnO charge transfer: Transient absorption study. Appl. Phys. Lett. 2012, 100, 243111.

    Google Scholar 

  30. Adams, D.M.; Brus, L.; Chidsey, C.E. D.; Creager, S.; Creutz, C.; Kagan, C.R.; Kamat, P.V.; Lieberman, M.; Lindsay, S.; Marcus, R.A. et al. Charge transfer on the nanoscale: Current status. J. Phys. Chem. B 2003, 107, 6668–6697.

    Google Scholar 

  31. Carlson, B.; Leschkies, K.S.; Aydil, E.S.; Zhu, X.Y. Valence band alignment at cadmium selenide quantum dot and zinc oxide (1010) interfaces. J. Phys. Chem. C 2008, 112, 8419–8423.

    Google Scholar 

  32. Cánovas, E.; Moll, P.; Jensen, S. A; Gao, Y.; Houtepen, A.J.; Siebbeles, L.D.; Kinge, S.; Bonn, M. Size-dependent electron transfer from PbSe quantum dots to SnO2 monitored by picosecond terahertz spectroscopy. Nano Lett. 2011, 11, 5234–5239.

    Google Scholar 

  33. Katoh, R.; Furube, A.; Hara, K.; Murata, S.; Sugihara, H.; Arakawa, H.; Tachiya, M. Efficiencies of electron injection from excited sensitizer dyes to nanocrystalline ZnO films as studied by near-IR optical absorption of injected electrons. J. Phys. Chem. B 2002, 106, 12957–12964.

    Google Scholar 

  34. Zheng, K.B.; Žídek, K.; Abdellah, M.; Chábera, P.; AbdEl-sadek, M.S.; Pullerits, T. Effect of metal oxide morphology on electron injection from CdSe quantum dots to ZnO. Appl. Phys. Lett. 2013, 102, 163119.

    Google Scholar 

  35. Ellingson, R.J.; Asbury, J.B.; Ferrere, S.; Ghosh, H.N.; Sprague, J.R.; Lian, T.; Nozik, A.J. Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with Ru.4,4’-Dicarboxy-2,2’-Bipyridine)2(NCS)2] by infrared transient absorption. J. Phys. Chem. B 1998, 102, 6455–6458.

    Google Scholar 

  36. Nemec, H.; Rochford, J.; Taratula, O.; Galoppini, E.; Kužel, P.; Polívka, T.; Yartsev, A.; Sundström, V. Influence of the electron-cation interaction on electron mobility in dyesensitized ZnO and TiO2 nanocrystals: A study using ultrafast terahertz spectroscopy. Phys. Rev. Lett. 2010, 104, 197401.

    Google Scholar 

  37. Meulenberg, R.W.; Lee, J.R.I.; Wolcott, A.; Zhang, J.Z.; Terminello, L.J.; van Buuren, T. Determination of the exciton binding energy in CdSe quantum dots. ACS Nano. 2009, 3, 325–330.

    Google Scholar 

  38. Shalom, M.; Dor, S.; Ruhle, S.; Grinis, L.; Zaban, A. Core/ CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. J. Phys. Chem. C 2009, 113, 3895–3898.

    Google Scholar 

  39. Guijarro, N.; Campiña, J.M.; Shen, Q.; Toyoda, T.; Lana-Villarreal, T.; Gómez, R. Uncovering the Role of the ZnS Treatment in the Performance of Quantum Dot Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2011, 13, 12024–12032.

    Google Scholar 

  40. Abdellah, M.; Marschan, R.; Žídek, K.; Messing, M.E.; Abdelwahab, A.; Chábera, P.; Zheng, K.B.; Pullerits, T. Hole trapping: The critical factor for quantum dot sensitized solar cell performance. J. Phys. Chem. C 2014, 118, 25802–25808.

    Google Scholar 

  41. Hansen, T.; Žídek, K.; Zheng, K.B.; Abdellah, M.; Chábera, P.; Persson, P.; Pullerits, T. Orbital topology controlling charge injection in quantum-dot-sensitized solar cells. J. Phys. Chem. Lett. 2014, 5, 1157–1162.

    Google Scholar 

  42. Pernik, D.R.; Tvrdy, K.; Radich, J.G.; Kamat, P.V. Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO2: Linked versus direct attachment. J. Phys. Chem. C 2011, 115, 13511–13519.

    Google Scholar 

  43. Guijarro, N.; Lana-Villarreal, T.; Shen, Q.; Toyoda, T.; Gómez, R. Sensitization of titanium dioxide photoanodes with cadmium selenide quantum dots prepared by SILAR: Photoelectrochemical and carrier dynamics studies. J. Phys. Chem. C 2010, 114, 21928–21937.

    Google Scholar 

  44. Dibbell, R.S.; Watson, D.F. Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles. J. Phys. Chem. C 2009, 113, 3139–3149.

    Google Scholar 

  45. Chakrapani, V.; Baker, D.; Karmat, P.V. Understanding the role of the sulfide redox couple (S2–/Sn 2–) in quantum dot sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 9607–9615.

    Google Scholar 

  46. Kamat, P. V; Christians, J.A.; Radich, J.G. Quantum dot solar cells: Hole transfer as a limiting factor in boosting the photoconversion efficiency. Langmuir 2014, 30, 5716–5725.

    Google Scholar 

  47. Wang, Z.J.; Shakya, A.; Gu, J.S.; Lian, S.C.; Maldonado, S. Sensitization of p-GaP with CdSe quantum dots: Lightstimulated hole injection. J. Am. Chem. Soc. 2013, 135, 9275–9278.

    Google Scholar 

  48. Barceló, I.; Guillén, E.; LanaVillarreal, T.; Gómez, R. Preparation and characterization of nickel oxide photocathodes sensitized with colloidal cadmium selenide quantum dots. J. Phys. Chem. C 2013, 117, 22509–22517.

    Google Scholar 

  49. Jones, M.; Lo, S.S.; Scholes, G.D. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proc. Natl. Acad. Sci. 2009, 106, 3011–3016.

    Google Scholar 

  50. Carter, A.C.; Bouldin, C.E.; Kemner, K.M.; Bell, M.I.; Woicik, J.C.; Majetich, S.A. Surface structure of cadmium selenide nanocrystallites. Phys. Rev. B 1997, 55, 13822.

    Google Scholar 

  51. Gómez-Campos, F.; Califano, M. Hole surface trapping in CdSe nanocrystals: Dynamics, rate fluctuations, and implications for blinking. Nano Lett. 2012, 12, 4508–4517.

    Google Scholar 

  52. Abdellah, M.; Karki, K.; Lenngren, N.; Zheng, K.B.; Pascher, T.; Yartsev, A.; Pullerits, T. Ultra long-lived radiative trap states in CdSe quantum dots. J. Phys. Chem. C 2014, 118, 21682–21686.

    Google Scholar 

  53. Chestnoy, N.; Harris, T.D.; Hull, R.; Brus, L.E. Luminescence and photophysics of cadmium sulfide semiconductor clusters: The nature of the emitting electronic state. J. Phys. Chem. 1986, 90, 3393–3399.

    Google Scholar 

  54. Mooney, J.; Krause, M.M.; Saari, J.I.; Kambhampati, P. Challenge to the deep-trap model of the surface in semiconductor nanocrystals. Phys. Rev. B 2013, 87, 081201.

    Google Scholar 

  55. Zheng, K.B.; Židek, K.; Abdellah, M.; Zhang, W.; Chábera, P.; Lenngren, N.; Yartsev, A.; Yartsev, A.; Pullerits, T. Ultrafast charge transfer from CdSe quantum dots to p-type NiO: Hole injection vs. hole trapping. J. Phys. Chem. C 2014, 118, 18462–18471.

    Google Scholar 

  56. Nazzal, A.Y.; Qu, L.H.; Peng, X.G.; Xiao, M. Photoactivated CdSe nanocrystals as nanosensors for gases. Nano Lett. 2003, 3, 819–822.

    Google Scholar 

  57. Wuister, S.F.; de Mello Donega, C.; Meijerink, A. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J. Phys. Chem. B 2004, 108, 17393–17397.

    Google Scholar 

  58. Malko, A.V.; Mikhailovsky, A.A.; Petruska, M.A.; Hollingsworth, J.A.; Klimov, V.I. Interplay between optical gain and photoinduced absorption in CdSe nanocrystals. J. Phys. Chem. B 2004, 108, 5250–5255.

    Google Scholar 

  59. Rowland, C.E.; Schaller, R.D. Exciton fate in semiconductor nanocrystals at elevated temperatures: hole trapping outcompetes exciton deactivation. J. Phys. Chem. C 2013, 117, 17337–17343.

    Google Scholar 

  60. Abdellah, M.; Marschan, R.; Židek, K.; Messing, M.E.; Abdelwahab, A.; Chábera, P.; Zheng, K.B.; Pullerits, T. Hole trapping: The critical factor for quantum dot sensitized solar cell performance. J. Phys. Chem. C 2014, 118, 25802–25808.

    Google Scholar 

  61. Agrawal, R.; Paci, J.T.; Espinosa, H.D. Large-scale density functional theory investigation of failure modes in ZnO nanowires. Nano Lett. 2010, 10, 3432–3438.

    Google Scholar 

  62. Guo, W.Z.; Li, J.J.; Wang, Y.; Peng, X.G. Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: Superior chemical, photochemical and thermal stability. J. Am. Chem. Soc. 2003, 125, 3901–3909.

    Google Scholar 

  63. Zhu, H.M.; Song, N.H.; Lian, T.Q. Controlling charge separation and recombination rates in CdSe/ZnS type I core–shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 2010, 15038–15045.

    Google Scholar 

  64. Bae, W.K.; Kwak, J.; Park, J.W.; Char, K.; Lee, C.; Lee, S. Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient. Adv. Mater. 2009, 21, 1690–1694.

    Google Scholar 

  65. Ning, Z.J.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J.X.; Li, M.; Kirmani, A.R.; Sun, J.-P.; Minor, J. et al..Air-stable N-Type colloidal quantum dot solids. Nat. Mater. 2014, 13, 822–828.

    Google Scholar 

  66. Tang, J.; Kemp, K.W.; Hoogland, S.; Jeong, K.S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomicligand passivation. Nat. Mater. 2011, 10, 765–771.

    Google Scholar 

  67. Ning, Z.J.; Ren, Y.; Hoogland, S.; Voznyy, O.; Levina, L.; Stadler, P.; Lan, X.Z.; Zhitomirsky, D.; Sargent, E.H. Allinorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 2012, 24, 6295–6299.

    Google Scholar 

  68. Bae, W.K.; Char, K.; Hur, H.; Lee, S. Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mater. 2008, 20, 531–539.

    Google Scholar 

  69. Morandeira, A.; Boschloo, G.; Hagfeldt, A.; Hammarström, L. Coumarin 343-NiO Films as nanostructured photocathodes in dye-sensitized solar cells: Ultrafast electron transfer, effect of the I3-/I- redox couple and mechanism of photocurrent generation. J. Phys. Chem. C 2008, 112, 9530–9537.

    Google Scholar 

  70. Li, L.; Gibson, E.A.; Qin, P.; Boschloo, G.; Gorlov, M.; Hagfeldt, A.; Sun, L.C. Double-layered NiO photocathodes for p-type DSSCs with record IPCE. Adv. Mater. 2010, 22, 1759–1762.

    Google Scholar 

  71. Carlson, B.; Leschkies, K.; Aydil, E.S.; Zhu, X.Y. Valence band alignment at cadmium selenide quantum dot and zinc oxide (1010) interfaces. J. Phys. Chem. C 2008, 112, 8419–8423.

    Google Scholar 

  72. Meulenberg, R.W.; Lee, J.R.; Wolcott, A.; Zhang, J.Z.; Terminello, L.J.; Van Buuren, T. Determination of the exciton binding energy in CdSe quantum dots. ACS Nano. 2009, 3, 325–330.

    Google Scholar 

  73. Santra, P.K.; Kamat, P.V. Tandem-Layered Quantum Dot Solar Cells: Tuning the photovoltaic response with luminescent ternary cadmium chalcogenides. J. Am. Chem. Soc. 2013, 135, 877–885.

    Google Scholar 

  74. Zheng, K.B.; Zídek, K.; Abdellah, M.; Torbjörnsson, M.; Chábera, P.; Shao, S.Y.; Zhang, F.L.; Pullerits, T. Fast monolayer adsorption and slow energy transfer in CdSe quantum dot sensitized ZnO nanowires. J. Phys. Chem. A 2012, 117, 5919–5925.

    Google Scholar 

  75. Choi, S.; Jin, H.; Bang, J.; Kim, S. Layer-by-layer quantum dot assemblies for the enhanced energy transfers and their applications toward efficient solar cells. J. Phys. Chem. Lett. 2012, 3, 3442–3447.

    Google Scholar 

  76. Choi, J.J.; Luria, J.; Hyun, B.R.; Bartnik, A.C.; Sun, L.; Lim, Y.F.; Marohn, J.A.; Wise, F.W.; Hanrath, T. Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett. 2010, 10, 1805–1811.

    Google Scholar 

  77. Rinnerbauer, V.; Egelhaaf, H.J.; Hingerl, K.; Zimmer, P.; Werner, S.; Warming, T.; Hoffmann, A.; Kovalenko, M.; Heiss, W.; Hesser, G. et al. Energy transfer in close-packed PbS nanocrystal films. Phys. Rev. B 2008, 77, 085322.

    Google Scholar 

  78. Hodes, G. Comparison of dye-and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J. Phys. Chem. C 2008, 112, 17778–17787.

    Google Scholar 

  79. Achermann, M.; Petruska, M.A.; Crooker, S.A.; Klimov, V.I. Picosecond energy transfer in quantum dot langmuirblodgett nanoassemblies. J. Phys. Chem. B 2003, 107, 13782–13787.

    Google Scholar 

  80. Hosoki, K.; Tayagaki, T.; Yamamoto, S.; Matsuda, K.; Kanemitsu, Y. Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films. Phys. Rev. Lett. 2008, 100, 207404.

    Google Scholar 

  81. Lunz, M.; Bradley, A.L.; Gerard, V.A.; Byrne, S.J.; Gun’ko, Y.K.; Lesnyak, V.; Gaponik, N. Concentration dependence of förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: Effect of donor-donor interactions. Phys. Rev. B 2011, 83, 115423.

    Google Scholar 

  82. Lee, J.; Govorov, A.O.; Kotov, N.A. Bioconjugated superstructures of CdTe nanowires and nanoparticles: Multistep cascade Förster resonance energy transfer and energy channeling. Nano Lett. 2005, 5, 2063–2069.

    Google Scholar 

  83. Pullerits, T.; Freiberg, A. Kinetic model of primary energy transfer and trapping in photosynthetic membranes. Biophys. J. 1992, 63, 879–896.

    Google Scholar 

  84. Beenken, W.J. D.; Pullerits, T. Excitonic coupling in polythiophenes: Comparison of different calculation methods. J. Chem. Phys. 2004, 120, 2490–2495.

    Google Scholar 

  85. Zheng, K.B.; Žídek, K.; Abdellah, M.; Zhu, N.; Chábera, P.; Lenngren, N.; Chi, Q.; Pullerits, T. Directed energy transfer in films of CdSe quantum dots: Beyond the point dipole approximation. J. Am. Chem. Soc. 2014, 136, 6259–6268.

    Google Scholar 

  86. Nozik, A.J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 2001, 52, 193–231.

    Google Scholar 

  87. Schaller, R.D.; Klimov, V.I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.

    Google Scholar 

  88. Ellingson, R.J.; Beard, M.C.; Johnson, J.C.; Yu, P.; Micic, O.I.; Nozik, A.J.; Shabaev, A.; Efros, A.L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005, 5, 865–871.

    Google Scholar 

  89. Schaller, R.D.; Petruska, M.A.; Klimov, V.I. Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. Appl. Phys. Lett. 2005, 87, 253102.

    Google Scholar 

  90. Murphy, J.E.; Beard, M.C.; Norman, A.G.; Ahrenkiel, S.P.; Johnson, J.C.; Yu, P.; Micic, O.; Ellingson, R.; Nozik, A.J. PbTe Colloidal Nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 2006, 128, 3241–3247.

    Google Scholar 

  91. Beard, M.C.; Knutsen, K.P.; Yu, P.; Luther, J.M.; Song, Q.; Metzger, W.K.; Ellingson, R.J.; Nozik, A.J. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 2007, 7, 2506–2512.

    Google Scholar 

  92. Nair, G.; Bawendi, M.G. Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy. Pthys. Rev. B 2007, 76, 081304.

    Google Scholar 

  93. Stubbs, S.K.; Hardman, S.J. O.; Graham, D.M.; Spencer, B.F.; Flavell, W.R.; Glarvey, P.; Masala, O.; Pickett, N.L.; Binks, D.J. Efficient carrier multiplication in InP nanoparticles. Phys. Rev. B 2010, 81, 081303.

    Google Scholar 

  94. Gabor, N.M.; Zhong, Z.; Bosnick, K.; Park, J.; McEuen, P.L. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 2009, 325, 1367–1371.

    Google Scholar 

  95. Chan, W.L.; Ligges, M.; Jailaubekov, A. Kaake, L.; Miaja-Avila, L.; Zhu, X.Y. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 2011, 1541–1545.

    Google Scholar 

  96. Stolle, C.J.; Schaller, R.D.; Korgel, B.A. Efficient carrier multiplication in colloidal CuInSe2 nanocrystals. J. Phys. Chem. Lett. 2014, 5, 3169–3174.

    Google Scholar 

  97. Nozik, A.J.; Beard, M.C.; Luther, J.M.; Law, M.; Ellingson, R.J.; Johnson, J.C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873–6890.

    Google Scholar 

  98. Nair, G.; Chang, L.Y.; Geyer, S.M.; Bawendi, M.G. Perspective on the prospects of a carrier multiplication nanocrystal solar cell. Nano Lett. 2011, 11, 2145–2151.

    Google Scholar 

  99. Kramer, I.J.; Sargent, E.H. Colloidal quantum dot photovoltaics: A path forward. ACS Nano 2011, 5, 8506–8514.

    Google Scholar 

  100. Mlinar, V. Engineered nanomaterials for solar energy conversion. Nanotechnology 2013, 24, 042001.

    Google Scholar 

  101. Delerue, C.; Allan, G.; Pijpers, J.J. H.; Bonn, M. Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells. Phys. Rev. B 2010, 81, 125306.

    Google Scholar 

  102. Gachet, D.; Avidan, A.; Pinkas, I.; Oron, D. An upper bound to carrier multiplication efficiency in type II colloidal quantum dots. Nano Lett. 2010, 10, 164–170.

    Google Scholar 

  103. Alharbi, F.H. Carrier multiplication applicability for photovoltaics; a critical analysis. J. Phys. D. Appl. Phys. 2013, 46, 125102.

    Google Scholar 

  104. Karki, K.J.; Ma, F.; Zheng, K.B.; Zidek, K.; Mousa, A.; Abdellah, M.A.; Messing, M.E.; Wallenberg, L.R.; Yartsev, A.; Pullerits, T. Multiple exciton generation in nano-crystals revisited: Consistent calculation of the yield based on pump-proble spectroscopy. Sci. Rep. 2013, 3, 2287.

    Google Scholar 

  105. Lenngren, N.; Garting, T.; Zheng, K.B.; Abdellah, M.; Lascoux, N.; Ma, F.; Yartsev, A.; Žídek, K.; Pullerits, T. Multiexciton absorption cross sections of CdSe quantum dots determined by ultrafast spectroscopy. J. Phys. Chem. Lett. 2013, 4, 3330–3336.

    Google Scholar 

  106. Brüggemann, B.; Herek, J.L.; Sundström, V.; Pullerits, T.; May, V. Microscopic theory of exciton annihilation: Application to the LH2 antenna system. J. Phys. Chem. B 2001, 105, 11391–11394.

    Google Scholar 

  107. Karki, K.; Namboodiri, M.; Khan, T.Z.; Materny, A. Pump-probe scanning near field optical microscopy: Subwavelength resolution chemical imaging and ultrafast local dynamics. Appl. Phys. Lett. 2012, 100, 153103.

    Google Scholar 

  108. Baer, R.; Rabani, E. Communication: Biexciton generation rates in CdSe nanorods are length independent. J. Chem. Phys. 2013, 138, 051102.

    Google Scholar 

  109. Židek, K.; Zheng, K.B.; Abdellah, M.; Lenngren, N.; Chábera, P.; Pullerits, T. Ultrafast Dynamics of Multiple Exciton Harvesting in the CdSe-ZnO System: Electron injection versus auger recombination. Nano Lett. 2012, 12, 6393–6399.

    Google Scholar 

  110. Sambur, J.B.; Novet, T.; Parkinson, B.A. Multiple exciton collection in a sensitized photovoltaic system. Science 2010, 330, 63–66.

    Google Scholar 

  111. Semonin, O.E.; Luther, J.M.; Choi, S.; Chen, H.Y.; Gao, J.; Nozik, A.J.; Beard, M.C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 2011, 334, 1530–1534.

    Google Scholar 

  112. Eshet, H.; Baer, R.; Neuhauser, D.; Rabani, E. Multiexciton generation in seeded nanorods. J. Phys. Chem. Lett. 2014, 5, 2580–2585.

    Google Scholar 

  113. Karki, K.J.; Widom, J.R.; Seibt, J.; Moody, I.; Lonegren, M.C.; Pullerits, T.; Marcus, A.H. Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell. Nat. Commun. 2014, 5, 5869.

    Google Scholar 

  114. Beard, M.C.; Luther, J.M.; Nozik, A.J. The promise and challenge of nanostructured solar cells. Nat. Nanotechnol. 2014, 9, 951–954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tõnu Pullerits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K., Karki, K., Žídek, K. et al. Ultrafast photoinduced dynamics in quantum dot-based systems for light harvesting. Nano Res. 8, 2125–2142 (2015). https://doi.org/10.1007/s12274-015-0751-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0751-9

Keywords

Navigation