Skip to main content
Log in

Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Even though great advances have been achieved in the synthesis of luminescent metal nanoclusters, it is still challenging to develop metal nanoclusters with high quantum efficiency as well as multiple sensing functionalities. Here, we demonstrate the rapid preparation of glutathione-capped Au/Ag nanoclusters (GS-Au/Ag NCs) using microwave irradiation and their unique sensing capacities. Compared to bare GS-Au NCs, the doped Au/Ag NCs possess an enhanced quantum yield (7.8% compared to 2.2% for GS-Au NCs). Several characterization techniques were used to elucidate the atomic composition, particulate character, and electronic structure of the fabricated NCs. According to the X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectra, a significant amount of Au exists in the oxidized state as Au(I), and the Ag atoms are positively charged. In contrast to those nanoclusters that detect only one analyte, the GS-Au/Ag NCs can be used as a versatile sensor for metal ions, anions, and small molecules. In this manner, the NCs can be regarded as a unique sensor-on-a-nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jin, R. C. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2, 343–362.

    Article  Google Scholar 

  2. Laaksonen, T.; Ruiz, V.; Liljeroth, P.; Quinn, B. M. Quantised charging of monolayer-protected nanoparticles. Chem. Soc. Rev. 2008, 37, 1836–1846.

    Article  Google Scholar 

  3. Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

    Article  Google Scholar 

  4. Zheng, J.; Zhou, C.; Yu, M. X.; Liu, J. B. Different sized luminescent gold nanoparticles. Nanoscale 2012, 4, 4073–4083.

    Article  Google Scholar 

  5. Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

    Article  Google Scholar 

  6. Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T. Kinetic stabilization of growing gold clusters by passivation with thiolates. J. Phys. Chem. B 2006, 110, 12218–12221.

    Article  Google Scholar 

  7. Kumar, S.; Bolan, M. D.; Bigioni, T. P. Glutathione-stabilized magic-number silver cluster compounds. J. Am. Chem. Soc. 2010, 132, 13141–13143.

    Article  Google Scholar 

  8. Yu, Y.; Chen, X.; Yao, Q. F.; Yu, Y.; Yan, N.; Xie, J. P. Scalable and precise synthesis of thiolated Au10–12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction. Chem. Mater. 2013, 25, 946–952.

    Article  Google Scholar 

  9. Bigioni, T. P.; Whetten, R. L.; Dag, Ö. Near-infrared luminescence from small gold nanocrystals. J. Phys. Chem. B 2000, 104, 6983–6986.

    Article  Google Scholar 

  10. Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M. A.; Schaaff, T. G.; Whetten, R. L. Visible to infrared luminescence from a 28-atom gold cluster. J. Phys. Chem. B 2002, 106, 3410–3415.

    Article  Google Scholar 

  11. Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem. Int. Ed. 2007, 46, 6824–6828.

    Article  Google Scholar 

  12. Lin, C. A. J.; Yang, T. Y.; Lee, C. H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J. L.; Wang, H. H.; Yeh, H. I. et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009, 3, 395–401.

    Article  Google Scholar 

  13. Adhikari, B.; Banerjee, A. Facile synthesis of water-soluble fluorescent silver nanoclusters and HgII sensing. Chem. Mater. 2010, 22, 4364–4371.

    Article  Google Scholar 

  14. Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

    Article  Google Scholar 

  15. Shang, L.; Dörlich, R. M.; Brandholt, S.; Schneider, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 2011, 3, 2009–2014.

    Article  Google Scholar 

  16. Shang, L.; Yang, L. X.; Stockmar, F.; Popescu, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. Microwaveassisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale 2012, 4, 4155–4160.

    Article  Google Scholar 

  17. Gawande, M. B.; Shelke, S. N.; Zboril, R.; Varma, R. S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res. 2014, 47, 1338–1348.

    Article  Google Scholar 

  18. Jao, Y. C.; Chen, M. K.; Lin, S. Y. Enhanced quantum yield of dendrimer-entrapped gold nanodots by a specific ion-pair association and microwave irradiation for bioimaging. Chem. Commun. 2010, 46, 2626–2628.

    Article  Google Scholar 

  19. Fields-Zinna, C. A.; Crowe, M. C.; Dass, A.; Weaver, J. E. F.; Murray, R. W. Mass spectrometry of small bimetal monolayer-protected clusters. Langmuir 2009, 25, 7704–7710.

    Article  Google Scholar 

  20. Negishi, Y.; Munakata, K.; Ohgake, W.; Nobusada, K. Effect of copper doping on electronic structure, geometric structure, and stability of thiolate-protected Au25 nanoclusters. J. Phys. Chem. Lett. 2012, 3, 2209–2214.

    Article  Google Scholar 

  21. Qian, H. F.; Jiang, D. E.; Li, G.; Gayathri, C.; Das, A.; Gil, R. R.; Jin, R. C. Monoplatinum doping of gold nanoclusters and catalytic application. J. Am. Chem. Soc. 2012, 134, 16159–16162.

    Google Scholar 

  22. Negishi, Y.; Iwai, T.; Ide, M. Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. Chem. Commun. 2010, 46, 4713–4715.

    Article  Google Scholar 

  23. Liu, H. Y.; Zhang, X.; Wu, X. M.; Jiang, L. P.; Burda, C.; Zhu, J. J. Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (II) sensing. Chem. Commun. 2011, 47, 4237–4239.

    Article  Google Scholar 

  24. Le Guével, X.; Trouillet, V.; Spies, C.; Li, K.; Laaksonen, T.; Auerbach, D.; Jung, G.; Schneider, M. High photostability and enhanced fluorescence of gold nanoclusters by silver doping. Nanoscale 2012, 4, 7624–7631.

    Article  Google Scholar 

  25. Zhou, T. Y.; Lin, L. P.; Rong, M. C.; Jiang, Y. Q.; Chen, X. Silver–gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. Anal. Chem. 2013, 85, 9839–9844.

    Article  Google Scholar 

  26. Wang, S. X.; Meng, X. M.; Das, A.; Li, T.; Song, Y. B.; Cao, T. T.; Zhu, X. Y.; Zhu, M. Z.; Jin, R. C. A 200-fold quantum yield boost in the photoluminescence of silverdoped AgxAu25-x nanoclusters: The 13th silver atom matters. Angew. Chem. Int. Ed. 2014, 53, 2376–2380.

    Article  Google Scholar 

  27. Zhang, J.; Chen, C. X.; Xu, X. W.; Wang, X. L.; Yang, X. R. Use of fluorescent gold nanoclusters for the construction of a NAND logic gate for nitrite. Chem. Commun. 2013, 49, 2691–2693.

    Article  Google Scholar 

  28. Chen, W. Y.; Lan, G. Y.; Chang, H. T. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem. 2011, 83, 9450–9455.

    Article  Google Scholar 

  29. Li, P. H.; Lin, J. Y.; Chen, C. T.; Ciou, W. R.; Chan, P. H.; Luo, L. Y.; Hsu, H. Y.; Diau, E. W. G.; Chen, Y. C. Using gold nanoclusters as selective luminescent probes for phosphatecontaining metabolites. Anal. Chem. 2012, 84, 5484–5488.

    Article  Google Scholar 

  30. Yuan, X.; Tay, Y. Q.; Dou, X. Y.; Luo, Z. T.; Leong, D. T.; Xie, J. P. Glutathione protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal. Chem. 2013, 85, 1913–1919.

    Article  Google Scholar 

  31. Kumara, C.; Dass, A. AuAg alloy nanomolecules with 38 metal atoms. Nanoscale 2012, 4, 4084–4086.

    Article  Google Scholar 

  32. Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

    Article  Google Scholar 

  33. Huang, C. C.; Liao, H. Y.; Shiang, Y. C.; Lin, Z. H.; Yang, Z.; Chang, H. T. Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. J. Mater. Chem. 2009, 19, 755–759.

    Article  Google Scholar 

  34. Yue, Y.; Liu, T. Y.; Li, H. W.; Liu, Z. Y.; Wu, Y. Q. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 2012, 4, 2251–2254.

    Article  Google Scholar 

  35. Dou, X. Y.; Yuan, X.; Yu, Y.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Xie, J. P. Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale 2014, 6, 157–161.

    Article  Google Scholar 

  36. Liu, J. B.; Yu, M. X.; Ning, X. H.; Zhou, C.; Yang, S. Y.; Zheng, J. PEGylation and zwitterionization: Pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 12572–12576.

    Article  Google Scholar 

  37. Shang, L; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 2011, 7, 2614–2620.

    Article  Google Scholar 

  38. Zhou, C.; Sun, C.; Yu, M. X.; Qin, Y. P.; Wang, J. G.; Kim, M.; Zheng, J. Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. J. Phys. Chem. C 2010, 114, 7727–7732.

    Article  Google Scholar 

  39. Qian, H. F.; Jin, R. C. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett. 2009, 9, 4083–4087.

    Article  Google Scholar 

  40. Qian, H. F.; Jin, R. C. Ambient synthesis of Au144(SR)60 nanoclusters in methanol. Chem. Mater. 2011, 23, 2209–2217.

    Article  Google Scholar 

  41. Wu, Z. K.; MacDonald, M. A.; Chen, J.; Zhang, P.; Jin, R. C. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J. Am. Chem. Soc. 2011, 133, 9670–9673.

    Article  Google Scholar 

  42. Wei, W. T.; Lu, Y. Z.; Chen, W.; Chen, S. W. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 2011, 133, 2060–2063.

    Article  Google Scholar 

  43. Wagner, C. D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy; Phys. Electron. Division, Perkin-Elmer Corp.: Eden Prairie, MN, 1979.

    Google Scholar 

  44. Weaver, J. F.; Hoflund, G. B. Surface characterization study of the thermal-decomposition of Ag2O. Chem. Mater. 1994, 6, 1693–1699.

    Article  Google Scholar 

  45. Yu, Y.; Luo, Z. T.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D. E.; Xie, J. P. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 2014, 136, 1246–1249.

    Article  Google Scholar 

  46. Yamamoto, T.; Takenaka, S.; Tanaka, T.; Baba, T. Stability of silver cluster in zeolite A and Y catalysts. J. Phys.: Conf. Ser. 2009, 190, 012171.

    Google Scholar 

  47. Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H. F.; Jin, R. C. A quantum alloy: The ligand-protected Au25-xAgx(SR)18 cluster. J. Phys. Chem. C 2013, 117, 7914–7923.

    Article  Google Scholar 

  48. Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670.

    Article  Google Scholar 

  49. Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G. U. Intracellular thermometry by using fluorescent gold nanoclusters. Angew. Chem. Int. Ed. 2013, 52, 11154–11157.

    Article  Google Scholar 

  50. Zhou, T. Y.; Rong, M. C.; Cai, Z. M.; Yang, C. Y. J.; Chen, X. Sonochemical synthesis of highly fluorescent glutathionestabilized Ag nanoclusters and S2- sensing. Nanoscale 2012, 4, 4103–4106.

    Article  Google Scholar 

  51. Wang, M.; Wu, Z. K.; Yang, J.; Wang, G. Z.; Wang, H. Z.; Cai, W. P. Au25(SG)18 as a fluorescent iodide sensor. Nanoscale 2012, 4, 4087–4090.

    Article  Google Scholar 

  52. Tu, X. J.; Chen, W. B.; Guo, X. Q. Facile one-pot synthesis of near-infrared luminescent gold nanoparticles for sensing copper (II). Nanotechnology 2011, 22, 095701.

    Article  Google Scholar 

  53. Wang, Z. X.; Zheng, C. L.; Ding, S. N. Label-free detection of sulfide ions based on fluorescence quenching of unmodified core-shell Au@Ag nanoclusters. RSC Adv. 2014, 4, 9825–9829.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hong Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yuan, Y., Wang, Y. et al. Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Res. 8, 2329–2339 (2015). https://doi.org/10.1007/s12274-015-0743-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0743-9

Keywords

Navigation