Skip to main content
Log in

An indicator-guided photo-controlled drug delivery system based on mesoporous silica/gold nanocomposites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A mesoporous silica/gold (MSN/Au) nanocomposite was designed for photo-controlled drug delivery targeted specifically at tumor cells. The MSN/Au nanocomposite was composed of MSN-based drug carriers and gold nanoparticle (AuNP)-based indicators. While the MSN-based drug carrier was a mesoporous silica nanoparticle immobilized with photo-switchable azobenzene (Azo) moieties, the AuNP-based indicator was a fluorescence-quenched AuNP modified with a matrix metalloproteinase (MMP) substrate and poly(ethylene glycol). The two kinds of nanoparticles were connected by an α,β cyclodextrin (α,β CD) dimer “bridge.” In vitro studies demonstrated that the nanocomposite specifically interacted with tumor sites overexpressing MMP-2, which enabled guidance of the subsequent UV light irradiation for releasing entrapped drugs. Through integration of the AuNP-based indicator and the MSN-based drug carrier, the MSN/Au nanocomposite could precisely localize the released drug to tumor sites, thereby significantly improving therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, Q.; Shi, J. MSN anti-cancer nanomedicines: Chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater. 2014, 26, 391–411.

    Article  Google Scholar 

  2. Ambrogio, M. W.; Thomas, C. R.; Zhao, Y. L.; Zink, J. I.; Stoddart, J. F. Mechanized silica nanoparticles: A new frountier in theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 903–913.

    Article  Google Scholar 

  3. Wu, S. H.; Hung, Y.; Mou, C. Y. Mesoporous silica nanoparticles as nanocarriers. Chem. Commun. 2011, 47, 9972–9985.

    Article  Google Scholar 

  4. Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534.

    Article  Google Scholar 

  5. Popat, A.; Hartono, S. B.; Stahr, F.; Liu, J.; Qiao, S. Z.; Qing Max Lu, G. Mesoporous silica nanoparticles for bioadsorption, enzyme immobilization, and delivery carriers. Nanoscale 2011, 3, 2801–2818.

    Article  Google Scholar 

  6. Yang, P.; Gai, S.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 2012, 41, 3679–3698.

    Article  Google Scholar 

  7. Chen, Y.; Chen, H.; Shi, J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.

    Article  Google Scholar 

  8. Chen, A. M.; Zhang, M.; Wei, D.; Stueber, D.; Taratula, O.; Minko, T.; He, H. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 2009, 5, 2673–2677.

    Article  Google Scholar 

  9. Guardado-Alvarez, T. M.; Sudha Devi, L.; Russell, M. M.; Schwartz, B. J.; Zink, J. I. Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons. J. Am. Chem. Soc. 2013, 135, 14000–14003.

    Article  Google Scholar 

  10. Mei, X.; Yang, S.; Chen, D.; Li, N.; Li, H.; Xu, Q.; Ge, J.; Lu, J. Light-triggered reversible assemblies of azobenzene-containing amphiphilic copolymer with β-cyclodextrin-modified hollow mesoporous silica nanoparticles for controlled drug release. Chem. Commun. 2012, 48, 10010–10012.

    Article  Google Scholar 

  11. Qian, R.; Ding, L.; Ju, H. Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle. J. Am. Chem. Soc. 2013, 135, 13282–13285.

    Article  Google Scholar 

  12. Zhu, C. L.; Lu, C. H.; Song, X. Y.; Yang, H. H.; Wang, X. R. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J. Am. Chem. Soc. 2011, 133, 1278–1281.

    Article  Google Scholar 

  13. Yan, H.; Teh, C.; Sreejith, S.; Zhu, L.; Kwok, A.; Fang, W.; Ma, X.; Nguyen, K. T.; Korzh, V.; Zhao, Y. Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo. Angew. Chem. Int. Ed. 2012, 51, 8373–8377.

    Article  Google Scholar 

  14. Díez, P.; Sánchez, A.; Gamella, M.; Martínez-Ruíz, P.; Aznar, E.; de la Torre, C.; Murguía, J. R.; Martínez-Máñez, R.; Villalonga, R.; Pingarrón, J. M. Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J. Am. Chem. Soc. 2014, 136, 9116–9123.

    Article  Google Scholar 

  15. Yang, K. N.; Zhang, C. Q.; Wang, W.; Wang, P. C.; Zhou, J. P.; Liang, X. J. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol. Med. 2014, 11, 34–43.

    Google Scholar 

  16. Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu, G. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracellular dissolution of ZnO nanolids. J. Am. Chem. Soc. 2011, 133, 8778–8781.

    Article  Google Scholar 

  17. Fu, J.; Chen, T.; Wang, M.; Yang, N.; Li, S.; Wang, Y.; Liu, X. Acid and alkaline dual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coating. ACS Nano 2013, 7, 11397–11408.

    Article  Google Scholar 

  18. Xiao, D.; Jia, H. Z.; Zhang, J.; Liu, C. W.; Zhuo, R. X.; Zhang, X. Z. A dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery. Small 2014, 10, 591–598.

    Article  Google Scholar 

  19. Zhang, Q.; Liu, F.; Nguyen, K. T.; Ma, X.; Wang, X.; Xing, B.; Zhao, Y. Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery. Adv. Funct. Mater. 2012, 22, 5144–5156.

    Article  Google Scholar 

  20. Wang, A.; Guo, M.; Wang, N.; Zhao, J.; Qi, W.; Muhammad, F.; Chen, L.; Guo, Y.; Nguyen, N. T.; Zhu, G. Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system. Nanoscale 2014, 6, 5270–5278.

    Article  Google Scholar 

  21. Kim, H.; Kim, S.; Park, C.; Lee, H.; Park, H. J.; Kim, C. Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Adv. Mater. 2010, 22, 4280–4283.

    Article  Google Scholar 

  22. Nadrah, P.; Maver, U.; Jemec, A.; Tišler, T.; Bele, M.; Dražić, G.; Benčina, M.; Pintar, A.; Planinšek, O.; Gaberšček, M. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica. ACS Appl. Mater. Interfaces 2013, 5, 3908–3915.

    Article  Google Scholar 

  23. Frasconi, M.; Liu, Z.; Lei, J.; Wu, Y.; Strekalova, E.; Malin, D.; Ambrogio, M. W.; Chen, X.; Botros, Y. Y.; Cryns, V. L. et al. Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles. J. Am. Chem. Soc. 2013, 135, 11603–11613.

    Article  Google Scholar 

  24. Croissant, J.; Maynadier, M.; Gallud, A.; Peindy N’dongo, H.; Nyalosaso, J. L.; Derrien, G.; Charnay, C.; Durand, J. O.; Raehm, L.; Serein-Spirau, F. et al. Two-photon-triggered drug delivery in cancer cells using nanoimpellers. Angew. Chem. Int. Ed. 2013, 52, 13813–13817.

    Article  Google Scholar 

  25. Wen, Y.; Xu, L.; Wang, W.; Wang, D.; Du, H.; Zhang, X. Highly efficient remote controlled release system based on light-driven DNA nanomachine functionalized mesoporous silica. Nanoscale 2012, 4, 4473–4476.

    Article  Google Scholar 

  26. Sun, Y. L.; Zhou, Y.; Li, Q. L.; Yang, Y. W. Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and cholinesulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release. Chem. Commun. 2013, 49, 9033–9035.

    Article  Google Scholar 

  27. Agostini, A.; Mondragón, L.; Bernardos, A.; Martínez-Máñez, R.; Marcos, M. D.; Sancenón, F.; Soto, J.; Costero, A.; Manguan-García, C.; Perona, R.; Moreno-Torres, M.; Aparicio-Sanchis, R.; Murguía, J. R. Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew. Chem. Int. Ed. 2012, 51, 10556–10560.

    Article  Google Scholar 

  28. De la Torre, C.; Agostini, A.; Mondragón, L.; Orzáez, M.; Sancenón, F.; Martínez-Máñez, R.; Marcos, M. D.; Amorós, P.; Pérez-Payá, E. Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun. 2014, 50, 3184–3186.

    Article  Google Scholar 

  29. Climent, E.; Martínez-Máñez, R.; Sancenón, F.; Marcos, M. D.; Soto, J.; Maquieira, A.; Amorós, P. Controlled delivery using oligonucleotide-capped mesoporous silica nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 7281–7283.

    Article  Google Scholar 

  30. Yuan, Q.; Zhang, Y.; Chen, T.; Lu, D.; Zhao, Z.; Zhang, X.; Li, Z.; Yan, C. H.; Tan, W. Photo-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS Nano 2012, 6, 6337–6344.

    Article  Google Scholar 

  31. Mal, N. K.; Fujiwara, M.; Tanaka, Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 2003, 421, 350–353.

    Article  Google Scholar 

  32. Lu, J.; Choi, E.; Tamanoi, F.; Zink, J. I. Light-activated nanoimpeller-controlled drug release in cancer cells. Small 2008, 4, 421–426.

    Article  Google Scholar 

  33. Ferris, D. P.; Zhao, Y. L.; Khashab, N. M.; Khatib, H. A.; Stoddart, J. F.; Zink, J. I. Light-operated mechanized nanoparticles. J. Am. Chem. Soc. 2009, 131, 1686–1688.

    Article  Google Scholar 

  34. Park, C.; Lee, K.; Kim, C. Photoresponsive cyclodextrin-covered nanocontainers and their sol-gel transition induced by molecular recognition. Angew. Chem. Int. Ed. 2009, 48, 1275–1278.

    Article  Google Scholar 

  35. Vivero-Escoto, J. L.; Slowing, I. I.; Wu, C. W.; Lin, V. S. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc. 2009, 131, 3462–3463.

    Article  Google Scholar 

  36. Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67.

    Article  Google Scholar 

  37. Jiang, T.; Olson, E. S.; Nguyen, Q. T.; Roy, M.; Jennings, P. A.; Tsien, R. Y. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. USA 2004, 101, 17867–17872.

    Article  Google Scholar 

  38. Zhang, X. X.; Eden, H. S.; Chen, X. Peptides in cancer nanomedicine: Drug carriers, targeting ligands and protease substrates. J. Controlled Release 2012, 159, 2–13.

    Article  Google Scholar 

  39. Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2002, 2, 161–174.

    Article  Google Scholar 

  40. Andresen, T. L.; Thompson, D. H.; Kaasgaard, T. Enzyme-triggered nanomedicine: Drug release strategies in cancer therapy. Mol. Membr. Biol. 2010, 27, 353–363.

    Article  Google Scholar 

  41. Merdad, A.; Karim, S.; Schulten, H. J.; Dallol, A.; Buhmeida, A.; Al-Thubaity, F.; Gari, M. A.; Chaudhary, A. G.; Abuzenadah, A. M.; Al-Qahtani, M. H. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer: MMP-9 as a potential biomarker for cancer invasion and metastasis. Anticancer Res. 2014, 34, 1355–1366.

    Google Scholar 

  42. Garripelli, V. K.; Kim, J. K.; Son, S.; Kim, W. J.; Repka, M. A.; Jo, S. Matrix metalloproteinase-sensitive thermogelling polymer for bioresponsive local drug delivery. Acta Biomater. 2011,7,1984–1992.

    Article  Google Scholar 

  43. Sarkar, N. R.; Rosendahl, T.; Krueger, A. B.; Banerjee, A. L.; Benton, K.; Mallik, S.; Srivastava, D. K. “Uncorking” of liposomes by matrix metalloproteinase-9. Chem. Commun. 2005, 8, 999–1001.

    Article  Google Scholar 

  44. Elegbede, A. I.; Banerjee, J.; Hanson, A. J.; Tobwala, S.; Ganguli, B.; Wang, R.; Lu, X.; Srivastava, D. K.; Mallik, S. Mechanistic studies of the triggered release of liposomal contents by matrix metalloproteinase-9. J. Am. Chem. Soc. 2008, 130, 10633–10642.

    Article  Google Scholar 

  45. Sun, I. C.; Eun, D. K.; Koo, H.; Ko, C. Y.; Kim, H. S.; Yi, D. K.; Choi, K.; Kwon, I. C.; Kim, K.; Ahn, C. H. Tumor-targeting gold particles for dual computed tomography/optical cancer imaging. Angew. Chem. Int. Ed. 2011, 50, 9348–9351.

    Article  Google Scholar 

  46. Myochin, T.; Hanaoka, K.; Komatsu, T.; Terai, T.; Nagano, T. Design strategy for a near-infrared fluorescence probe for matrix metalloproteinase utilizing highly cell permeable boron dipyrromethene. J. Am. Chem. Soc. 2012, 134, 13730–13737.

    Article  Google Scholar 

  47. Xu, J. H.; Gao, F. P.; Liu, X. F.; Zeng, Q.; Guo, S. S.; Tang, Z. Y.; Zhao, X. Z.; Wang, H. Supramolecular gelatin nanoparticles as matrix metalloproteinase responsive cancer cell imaging probes. Chem. Commun. 2013, 49, 4462–4464.

    Article  Google Scholar 

  48. Ryu, J. H.; Shin, J. Y.; Kim, S. A.; Kang, S. W.; Kim, H.; Kang, S.; Choi, K.; Kwon, I. C.; Kim, B. S.; Kim, K. Non-invasive optical imaging of matrix metalloproteinase activity with albumin-based fluorogenic nanoprobes during angiogenesis in a mouse hindlimb ischemia model. Biomaterials 2013, 34, 6871–6881.

    Article  Google Scholar 

  49. Chen, P.; Selegård, R.; Aili, D.; Liedberg, B. Peptide functionalized gold nanoparticles for colorimetric detection of matrilysin (MMP-7) activity. Nanoscale 2013, 5, 8973–8976.

    Article  Google Scholar 

  50. Kim, J. H.; Chung, B. H. Proteolytic fluorescent signal amplification on gold nanoparticles for a highly sensitive and rapid protease assay. Small 2010, 6, 126–131.

    Article  Google Scholar 

  51. Lee, S.; Cha, E. J.; Park, K.; Lee, S. Y.; Hong, J. K.; Sun, I. C.; Kim, K.; Ahn, C. H. A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angew. Chem. Int. Ed. 2008, 47, 2804–2807.

    Article  Google Scholar 

  52. Zhang, J.; Yuan, Z. F.; Wang, Y.; Chen, W. H.; Luo, G. F.; Cheng, S. X.; Zhuo, R. X.; Zhang, X. Z. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J. Am. Chem. Soc. 2013, 135, 5068–5073.

    Article  Google Scholar 

  53. Rekharsky, M. V.; Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem. Rev. 1998, 98, 1875–1918.

    Article  Google Scholar 

  54. Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P. pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J. Am. Chem. Soc. 2010, 132, 1500–1501.

    Article  Google Scholar 

  55. Lee, H.; Lee, K.; Kim, I. K.; Park, T. G. Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. Biomaterials 2008, 29, 4709–4718.

    Article  Google Scholar 

  56. Kang, B.; Afifi, M. M.; Austin, L. A.; El-Sayed, M. A. Exploiting the nanoparticle plasmon effect: Observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy. ACS Nano 2013, 7, 7420–7427.

    Article  Google Scholar 

  57. Chen, W. H.; Xu, X. D.; Jia, H. Z.; Lei, Q.; Luo, G. F.; Cheng, S. X.; Zhuo, R. X.; Zhang, X. Z. Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo. Biomaterials 2013, 34, 8798–8807.

    Article  Google Scholar 

  58. Xiao, W.; Chen, W. H.; Xu, X. D.; Li, C.; Zhang, J.; Zhuo, R. X.; Zhang, X. Z. Design of a cellular-uptake-shielding “plug and play” template for photo controllable drug release. Adv. Mater. 2011, 23, 3526–3530.

    Article  Google Scholar 

  59. Dugave, C.; Demange, L. Cis-trans isomerization of organic molecules and biomolecules: Implications and applications. Chem. Rev. 2003, 103, 2475–2532.

    Article  Google Scholar 

  60. Luo, G. F.; Chen, W. H.; Liu, Y.; Zhang, J.; Cheng, S. X.; Zhuo, R. X.; Zhang, X. Z. Charge-reversal plug gate nanovalves on peptide-functionalized mesoporous silica nanoparticles for targeted drug delivery. J. Mater. Chem. B 2013, 1, 5723–5732.

    Article  Google Scholar 

  61. Fields, G. B.; Noble, R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 1990, 35, 161–214.

    Article  Google Scholar 

  62. Pan, L.; He, Q.; Liu, J.; Chen, Y.; Ma, M.; Zhang, L.; Shi, J. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722–5725.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzheng Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Chen, W., Jia, H. et al. An indicator-guided photo-controlled drug delivery system based on mesoporous silica/gold nanocomposites. Nano Res. 8, 1893–1905 (2015). https://doi.org/10.1007/s12274-014-0698-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0698-2

Keywords

Navigation