Skip to main content
Log in

Bench-top aqueous two-phase extraction of isolated individual single-walled carbon nanotubes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Isolation and purification of single-walled carbon nanotubes (SWCNTs) are prerequisites for their implementation in various applications. In this work, we present a fast (∼5 min), low-cost, and easily scalable bench-top approach to the extraction of high-quality isolated SWCNTs from bundles and impurities in an aqueous dispersion. The extraction procedure, based on aqueous two-phase (ATP) separation, is widely applicable to any SWCNT source (tested on samples up to 1.7 nm in diameter) and independent of defect density, purity, diameter, and length. The extracted dispersions demonstrate that the removal of large aggregates, small bundles, and impurities is comparable to that by density gradient ultracentrifugation, but without the need for high-end instrumentation. Raman and fluorescence-excitation spectroscopy, single-nanotube fluorescence imaging, atomic force and transmission electron microscopy, and thermogravimetric analysis all confirm the high purity of the isolated SWCNTs. By predispersing the SWCNTs without sonication (only gentle stirring), full-length, pristine SWCNTs can be isolated (tested up to 20 μm). Hence, this simple ATP method will find immediate application in the generation of SWCNT materials for all levels of nanotube research and applications, from fundamental studies to high-performance devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Carbon Nanotubes: Advanced Topics in Synthesis, Structure, Properties and Applications; Springer-Verlag: Berlin, 2008.

    Book  Google Scholar 

  2. O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Hároz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.

    Article  Google Scholar 

  3. Islam, M. F.; Rojas, E.; Bergey, D. M.; Johnson, A. T.; Yodh, A. G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 2003, 3, 269–273.

    Article  Google Scholar 

  4. Wenseleers, W.; Vlasov, I. I.; Goovaerts, E.; Obraztsova, E. D.; Lobach, A. S.; Bouwen, A. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 2004, 14, 1105–1112.

    Article  Google Scholar 

  5. Cathcart, H.; Quinn, S.; Nicolosi, V.; Kelly, J. M.; Blau, W. J.; Coleman, J. N. Spontaneous debundling of single-walled carbon nanotubes in DNA-based dispersions. J. Phys. Chem. C 2006, 111, 66–74.

    Article  Google Scholar 

  6. Gerstel, P.; Klumpp, S.; Hennrich, F.; Altintas, O.; Eaton, T. R.; Mayor, M.; Barner-Kowollik, C.; Kappes, M. M. Selective dispersion of single-walled carbon nanotubes via easily accessible conjugated click polymers. Polym. Chem. 2012, 3, 1966–1970.

    Article  Google Scholar 

  7. Wenseleers, W.; Cambré, S.; Čulin, J.; Bouwen, A.; Goovaerts, E. Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: Characterizing tube opening by Raman spectroscopy. Adv. Mater. 2007, 19, 2274–2278.

    Article  Google Scholar 

  8. Parra-Vasquez, A. N. G.; Duque, J. G.; Green, M. J.; Pasquali, M. Assessment of length and bundle distribution of dilute single-walled carbon nanotubes by viscosity measurements. AIChE Journal 2014, 60, 1499–1508.

    Article  Google Scholar 

  9. Bonaccorso, F.; Hasan, T.; Tan, P. H.; Sciascia, C.; Privitera, G.; Di Marco, G.; Gucciardi, P. G.; Ferrari, A. C. Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactants encapsulation. J. Phys. Chem. C 2010, 114, 17267–17285.

    Article  Google Scholar 

  10. Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.

    Article  Google Scholar 

  11. Tabakman, S. M.; Welsher, K.; Hong, G. S.; Dai, H. J. Optical properties of single-walled carbon nanotubes separated in a density gradient: Length, bundling, and aromatic stacking effects. J. Phys. Chem. C 2010, 114, 19569–19575.

    Article  Google Scholar 

  12. O’Connell, M. J.; Sivaram, S.; Doorn, S. K. Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: A direct comparison of bundled and individually dispersed HiPco nanotubes. Phys. Rev. B 2004, 69, 235415.

    Article  Google Scholar 

  13. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

    Article  Google Scholar 

  14. Ghosh, S.; Bachilo, S. M.; Weisman, R. B. Removing aggregates from single-walled carbon nanotube samples by magnetic purification. J. Phys. Chem. C 2014, 118, 4489–4494.

    Article  Google Scholar 

  15. Arnold, M. S.; Suntivich, J.; Stupp, S. I.; Hersam, M. C. Hydrodynamic characterization of surfactant encapsulated carbon nanotubes using an analytical ultracentrifuge. ACS Nano 2008, 2, 2291–2300.

    Article  Google Scholar 

  16. Naumov, A. V.; Kuznetsov, O. A.; Harutyunyan, A. R.; Green, A. A.; Hersam, M. C.; Resasco, D. E.; Nikolaev, P. N.; Weisman, R. B. Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies. Nano Lett. 2009, 9, 3203–3208.

    Article  Google Scholar 

  17. Fagan, J. A.; Zheng, M.; Rastogi, V.; Simpson, J. R.; Khripin, C. Y.; Batista, C. A. S.; Walker, A. R. H. Analyzing surfactant structures on length and chirality resolved (6,5) single-wall carbon nanotubes by analytical ultracentrifugation. ACS Nano 2013, 7, 3373–3387.

    Article  Google Scholar 

  18. Khripin, C. Y.; Fagan, J. A.; Zheng, M. Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases. J. Am. Chem. Soc. 2013, 135, 6822–6825.

    Article  Google Scholar 

  19. Fagan, J. A.; Khripin, C. Y.; Silvera Batista, C. A.; Simpson, J. R.; Hároz, E. H.; Hight Walker, A. R.; Zheng, M. Isolation of specfic small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv. Mater. 2014, 26, 2800–2804.

    Article  Google Scholar 

  20. Subbaiyan, N. K.; Cambré, S.; Parra-Vasquez, A. N. G.; Hároz, E. H.; Doorn, S. K.; Duque, J. G. Role of surfactants and salt in aqueous two-phase separation of carbon nanotubes toward simple chirality isolation. ACS Nano 2014, 8, 1619–1628.

    Article  Google Scholar 

  21. Zhang, M.; Khripin, C. Y.; Fagan, J. A.; McPhie, P.; Ito, Y.; Zheng, M. Single-step total fractionation of single-wall carbon nanotubes by countercurrent chromatography. Anal. Chem. 2014, 86, 3980–3984.

    Article  Google Scholar 

  22. Ao, G. Y.; Khripin, C. Y.; Zheng, M. DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems. J. Am. Chem. Soc. 2014, 136, 10383–10392.

    Article  Google Scholar 

  23. Albertsson, P. A. Partition of Cell Particles and Macromolecules: Separation and Purification of Biomolecules, Cell Organelles, Membranes and Cells in Aqueous Polymer Two Phase Systems and Their Use in Biochemical Analysis and Biotechnology; John Wiley and Sons: New York, 1986.

    Google Scholar 

  24. Duque, J. G.; Pasquali, M.; Cognet, L.; Lounis, B. Environmental and synthesis-dependent luminescence properties of individual single-walled carbon nanotubes. ACS Nano 2009, 3, 2153–2156.

    Article  Google Scholar 

  25. Cambré, S.; Schoeters, B.; Luyckx, S.; Goovaerts, E.; Wenseleers, W. Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3). Phys. Rev. Lett. 2010, 104, 207401.

    Article  Google Scholar 

  26. Dresselhaus, M. S.; Jorio, A.; Souza Filho, A. G.; Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A 2010, 368, 5355–5377.

    Article  Google Scholar 

  27. Miyata, Y.; Mizuno, K.; Kataura, H. Purity and defect characterization of single-wall carbon nanotubes using Raman spectroscopy. J. Nanomater. 2011, 2011, 18.

    Article  Google Scholar 

  28. Liu, H. P.; Tanaka, T.; Urabe, Y.; Kataura, H. High-efficiency single-chirality separation of carbon nanotubes using temperature-controlled gel chromatography. Nano Lett. 2013, 13, 1996–2003.

    Article  Google Scholar 

  29. D’Alagni, M.; D’Archivio, A. A.; Galantini, L.; Giglio, E. Structural study of the micellar aggregates of sodium chenodeoxycholate and sodium deoxycholate. Langmuir 1997, 13, 5811–5815.

    Article  Google Scholar 

  30. Glaeske, M.; Setaro, A. Nanoplasmonic colloidal suspensions for the enhancement of the luminescent emission from single-walled carbon nanotubes. Nano Res. 2013, 6, 593–601.

    Article  Google Scholar 

  31. Shea, M. J.; Arnold, M. S. 1% solar cells derived from ultrathin carbon nanotube photoabsorbing films. Appl. Phys. Lett. 2013, 102, 243101.

    Article  Google Scholar 

  32. Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.

    Article  Google Scholar 

  33. Zhang, J. L.; Gui, H.; Liu, B. L.; Liu, J.; Zhou, C. W. Comparative study of gel-based separated arcdischarge, HiPco, and CoMoCat carbon nanotubes for macroelectronic applications. Nano Res. 2013, 6, 906–920.

    Article  Google Scholar 

  34. Diao, S.; Hong, G. S.; Robinson, J. T.; Jiao, L. Y.; Antaris, A. L.; Wu, J. Z.; Choi, C. L.; Dai, H. J. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J. Am. Chem. Soc. 2012, 134, 16971–16974.

    Article  Google Scholar 

  35. Hong, G. S.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L. M.; Huang, N. F.; Cooke, J. P.; Dai, H. J. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 2012, 18, 1841–1846.

    Article  Google Scholar 

  36. Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; ter Waarbeek, R. F.; de Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186.

    Article  Google Scholar 

  37. Wu, M. H.; Liu, K. H.; Wang, W. L.; Sui, Y.; Bai, X. D.; Wang, E. G. Ultralong aligned single-walled carbon nanotubes on flexible fluorphlogopite mica for strain sensors. Nano Res. 2012, 5, 443–449.

    Article  Google Scholar 

  38. Tenent, R. C.; Barnes, T. M.; Bergeson, J. D.; Ferguson, A. J.; To, B.; Gedvilas, L. M.; Heben, M. J.; Blackburn, J. L. Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 2009, 21, 3210–3216.

    Article  Google Scholar 

  39. Wang, Y.; Huang, L. P.; Liu, Y. Q.; Wei, D. C.; Zhang, H. L.; Kajiura, H.; Li, Y. M. Minimizing purification-induced defects in single-walled carbon nanotubes gives films with improved conductivity. Nano Res. 2009, 2, 865–871.

    Article  Google Scholar 

  40. Zhao, S. H.; Kitagawa, T.; Miyauchi, Y.; Matsuda, K.; Shinohara, H.; Kitaura, R. Rayleigh scattering studies on inter-layer interactions in structure-defined individual double-wall carbon nanotubes. Nano Res. 2014, 7, 1548–1555.

    Article  Google Scholar 

  41. Cambré, S.; Santos, S. M.; Wenseleers, W.; Nugraha, A. R. T.; Saito, R.; Cognet, L.; Lounis, B. Luminescence properties of individual empty and water-filled single-walled carbon nanotubes. ACS Nano 2012, 6, 2649–2655.

    Article  Google Scholar 

  42. Cambré, S.; Wenseleers, W. Separation and diameter-worting of empty (end-capped) and water-filled (open) carbon nanotubes by density gradient ultracentrifugation. Angew. Chem. Int. Ed. 2011, 50, 2764–2768.

    Article  Google Scholar 

  43. Fagan, J. A.; Becker, M. L.; Chun, J.; Hobbie, E. K. Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 2008, 20, 1609–1613.

    Article  Google Scholar 

  44. Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F. et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

    Article  Google Scholar 

  45. Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan G. Duque.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbaiyan, N.K., Parra-Vasquez, A.N.G., Cambré, S. et al. Bench-top aqueous two-phase extraction of isolated individual single-walled carbon nanotubes. Nano Res. 8, 1755–1769 (2015). https://doi.org/10.1007/s12274-014-0680-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0680-z

Keywords

Navigation