Skip to main content
Log in

Metal-film-assisted ultra-clean transfer of single-walled carbon nanotubes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transfer printing of nanomaterials onto target substrates has been widely used in the fabrication of nanodevices, but it remains a challenge to fully avoid contamination introduced in the transfer process. Here we report a metal-film-assisted method to realize an ultra-clean transfer of single-walled carbon nanotubes (SWCNTs) mediated by poly(methyl methacrylate) (PMMA). The amount of PMMA residue can be greatly reduced due to its strong physical adhesion to the metal film, leading to ultra-clean surfaces of both the SWCNTs and the substrates. This metal-film-assisted transfer method is efficient, nondestructive, and scalable. It is also suitable for the transfer of graphene and other nanostructures. Furthermore, the relatively low temperature employed allows this technique to be compatible with nanomaterial-based flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

    Article  Google Scholar 

  2. Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800–805.

    Article  Google Scholar 

  3. Che, Y. C.; Wang, C.; Liu, J.; Liu, B. L.; Lin, X.; Parker, J.; Beasley, C.; Wong, H. S. P.; Zhou, C. W. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 2012, 6, 7454–7462.

    Article  Google Scholar 

  4. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  5. Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

    Article  Google Scholar 

  6. Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

    Article  Google Scholar 

  7. Sun, D. M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156–161.

    Article  Google Scholar 

  8. Chae, S. H.; Yu, W. J.; Bae, J. J.; Duong, D. L.; Perello, D.; Jeong, H. Y.; Ta, Q. H.; Ly, T. H.; Vu, Q. A.; Yun, M. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 2013, 12, 403–409.

    Article  Google Scholar 

  9. Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612–12613.

    Article  Google Scholar 

  10. Gao, L.; Ni, G. X.; Liu, Y.; Liu, B.; Neto, A. H. C.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

    Article  Google Scholar 

  11. Meitl, M. A.; Zhu, Z. T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38.

    Article  Google Scholar 

  12. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  Google Scholar 

  13. Schneider, G. F.; Calado, V. E.; Zandbergen, H.; Vandersypen, L. M. K.; Dekker, C. Wedging transfer of nanostructures. Nano Lett. 2010, 10, 1912–1916.

    Article  Google Scholar 

  14. Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Chen, P. C.; Badmaev, A.; De Arco, L. G.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.

    Article  Google Scholar 

  15. Hur, S. H.; Park, O. O.; Rogers, J. A. Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors. Appl. Phys. Lett. 2005, 86, 243502.

    Article  Google Scholar 

  16. Kim, J.; Park, H.; Hannon, J. B.; Bedell, S. W.; Fogel, K.; Sadana, D. K.; Dimitrakopoulos, C. Layer-resolved graphene transfer via engineered strain layers. Science 2013, 342, 833–836.

    Article  Google Scholar 

  17. Fuhrer, M. S.; Nygard, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A. et al. Crossed nanotube junctions. Science 2000, 288, 494–497.

    Article  Google Scholar 

  18. Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.

    Article  Google Scholar 

  19. Kang, S. J.; Kocabas, C.; Kim, H. S.; Cao, Q.; Meitl, M. A.; Khang, D. Y.; Rogers, J. A. Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic, applications. Nano Lett. 2007, 7, 3343–3348.

    Article  Google Scholar 

  20. Shulaker, M. M.; Wei, H.; Patil, N.; Provine, J.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Linear increases in carbon nanotube density through multiple transfer technique. Nano Lett. 2011, 11, 1881–1886.

    Article  Google Scholar 

  21. Wang, C. A.; Ryu, K. M.; De Arco, L. G.; Badmaev, A.; Zhang, J. L.; Lin, X.; Che, Y. C.; Zhou, C. W. Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer. Nano Res. 2010, 3, 831–842.

    Article  Google Scholar 

  22. Sun, D. M.; Timmermans, M. Y.; Kaskela, A.; Nasibulin, A. G.; Kishimoto, S.; Mizutani, T.; Kauppinen, E. I.; Ohno, Y. Mouldable all-carbon integrated circuits. Nat. Commun. 2013, 4, 2302.

    Google Scholar 

  23. Li, J.; He, Y. J.; Han, Y. M.; Liu, K.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 2012, 12, 4095–4101.

    Article  Google Scholar 

  24. He, Y. J.; Zhang, J.; Li, D. Q.; Wang, J. T.; Wu, Q.; Wei, Y.; Zhang, L. N.; Wang, J. P.; Liu, P.; Li, Q. Q. et al. Evaluating bandgap distributions of carbon nanotubes via scanning electron microscopy imaging of the Schottky barriers. Nano Lett. 2013, 13, 5556–5562.

    Article  Google Scholar 

  25. Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, P. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 2002, 89, 106801.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Wei or Kaili Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Li, D., Li, T. et al. Metal-film-assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Res. 7, 981–989 (2014). https://doi.org/10.1007/s12274-014-0460-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0460-9

Keywords

Navigation