Skip to main content
Log in

Solution-processable graphene mesh transparent electrodes for organic solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene mesh electrodes (GMEs) with good conductivity and transparency have been fabricated by the standard industrial photolithography and O2 plasma etching process using graphene solutions. Organic photovoltaic (OPV) cells using GMEs as the transparent electrodes with a blend of poly-(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PC61BM) as the active layer have been fabricated and exhibit a power conversion efficiency (PCE) of 2.04%, the highest PCE for solution-processed graphene transparent electrode-based solar cells reported to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864–868.

    Article  CAS  Google Scholar 

  2. Boehme, M.; Charton, C. Properties of ITO on PET film in dependence on the coating conditions and thermal processing. Surf. Coat. Technol. 2005, 200, 932–935.

    Article  CAS  Google Scholar 

  3. Andersson, A.; Johansson, N.; Broms, P.; Yu, N.; Lupo, D.; Salaneck, W. R. Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Adv. Mater. 1998, 10, 859–863.

    Article  CAS  Google Scholar 

  4. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  5. Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

    Article  CAS  Google Scholar 

  6. Geim, A. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  CAS  Google Scholar 

  7. Sui, D.; Huang, Y.; Huang, L.; Liang, J.; Ma, Y.; Chen, Y. Flexible and transparent electrothermal film heaters based on graphene materials. Small 2011, 7, 3186–3192.

    Article  CAS  Google Scholar 

  8. Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 2009, 19, 2297–2302.

    Article  CAS  Google Scholar 

  9. Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

    Article  CAS  Google Scholar 

  10. Wan, X.; Huang, Y.; Chen, Y. Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale. Acc. Chem. Res. 2012, 45, 598–607.

    Article  CAS  Google Scholar 

  11. Wan, X.; Long, G.; Huang, L.; Chen, Y. Graphene-A promising material for organic photovoltaic cells. Adv. Mater. 2011, 23, 5342–5358.

    Article  CAS  Google Scholar 

  12. Huang, X.; Zeng, Z.; Fan, Z.; Liu, J.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979–6004.

    Article  CAS  Google Scholar 

  13. He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-based electronic sensors. Chem. Sci. 2012, 3, 1764–1772.

    Article  CAS  Google Scholar 

  14. Huang, X.; Qi, X.; Boeyab, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

    Article  CAS  Google Scholar 

  15. Xu, Y.; Long, G.; Huang, L.; Huang, Y.; Wan, X.; Ma, Y.; Chen, Y. Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon 2010, 48, 3308–3311.

    Article  CAS  Google Scholar 

  16. Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 2008, 92, 263302.

    Article  Google Scholar 

  17. Eda, G.; Lin, Y. Y.; Miller, S.; Chen, C. W.; Su, W. F.; Chhowalla, M. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 2008, 92, 233305

    Article  Google Scholar 

  18. Tung, V. C.; Chen, L. M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 2009, 9, 1949–1955.

    Article  CAS  Google Scholar 

  19. Yin, Z.; Sun, S.; Salim, T.; Wu, S.; Huang, X.; He, Q.; Lam, Y. M.; Zhang, H. Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 2010, 4, 5263–5268.

    Article  CAS  Google Scholar 

  20. Geng, J.; Liu, L.; Yang, S. B.; Youn, S. C.; Kim, D. W.; Lee, J. S.; Choi, J. K.; Jung, H. T. A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension. J. Phys. Chem. C 2010, 114, 14433–14440.

    Article  CAS  Google Scholar 

  21. Pang, S.; Tsao, H. N.; Feng, X.; Müellen, K. Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. Adv. Mater. 2009, 21, 3488–3491.

    Article  CAS  Google Scholar 

  22. Wang, X.; Zhi, L.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

    Article  CAS  Google Scholar 

  23. Wu, J.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43–48.

    Article  CAS  Google Scholar 

  24. De Arco, L. G.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. Continuous, highly flexible, and transparent graphene dilms by chemical vapor deposition for organic photovoltaics. ACS Nano 2010, 4, 2865–2873.

    Article  Google Scholar 

  25. Choe, M.; Lee, B. H.; Jo, G.; Park, J.; Park, W.; Lee, S.; Hong, W. K.; Seong, M. J.; Kahng, Y. H.; Lee, K.; et al. Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Org. Electron. 2010, 11, 1864–1869.

    Article  CAS  Google Scholar 

  26. Choi, Y. Y.; Kang, S. J.; Kim, H. K.; Choi, W. M.; Na, S. I. Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Sol. Energ. Mat. Sol. C 2012, 96, 281–285.

    Article  CAS  Google Scholar 

  27. Wang, Y.; Chen, X.; Zhong, Y.; Zhu, F.; Loh, K. P. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 2009, 95, 063302.

    Article  Google Scholar 

  28. Wang, Y.; Tong, S. W.; Xu, X. F.; Öezyilmaz, B.; Loh, K. P. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv. Mater. 2011, 23, 1514–1518.

    Article  CAS  Google Scholar 

  29. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  CAS  Google Scholar 

  30. Zhu, Y.; Sun, Z.; Yan, Z.; Jin, Z.; Tour, J. M. Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano 2011, 5, 6472–6479.

    Article  CAS  Google Scholar 

  31. Lin, P.; Choy, W. H.; Zhang, D.; Xie, F.; Xin, J.; Leung, C. W. Semitransparent organic solar cells with hybrid monolayer graphene/metal grid as top electrodes. Appl. Phys. Lett. 2013, 102, 113303.

    Article  Google Scholar 

  32. Liu, J.; Yin, Z.; Cao, X.; Zhao, F.; Wang, L.; Huang, W.; Zhang, H. Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices. Adv. Mater. 2013, 25, 233–238.

    Article  CAS  Google Scholar 

  33. Liu, J.; Lin, Z.; Liu, T.; Yin, Z.; Zhou, X.; Chen, S.; Xie, L.; Boey, F.; Zhang, H.; Huang, W. Multilayer stacked low-temperature-reduced graphene oxide films: Preparation, characterization, and application in polymer memory devices. Small 2010, 6, 1536–1542.

    Article  CAS  Google Scholar 

  34. Kang, M. G.; Kim, M. S.; Kim, J.; Guo, L. Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 2008, 20, 4408–4413.

    Article  CAS  Google Scholar 

  35. Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

    Article  CAS  Google Scholar 

  36. Hecht, D. S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    Article  CAS  Google Scholar 

  37. Yang, L.; Zhang, T.; Zhou, H.; Price, S. C.; Wiley, B. J.; You, W. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 2011, 3, 4075–4084.

    Article  CAS  Google Scholar 

  38. Zeng, Z.; Huang, X.; Yin, Z.; Li, H.; Chen, Y.; Li, H.; Zhang, Q.; Ma, J.; Boey, F.; Zhang, H. Fabrication of graphene nanomesh by using an anodic aluminum oxide membrane as a template. Adv. Mater. 2012, 24, 4138–4142

    Article  CAS  Google Scholar 

  39. Zhang, L.; Liang, J.; Huang, Y.; Ma, Y.; Wang, Y.; Chen, Y. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 2009, 47, 3365–3368

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Wan, X., Xing, F. et al. Solution-processable graphene mesh transparent electrodes for organic solar cells. Nano Res. 6, 478–484 (2013). https://doi.org/10.1007/s12274-013-0325-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0325-7

Keywords

Navigation