Skip to main content
Log in

Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Monodisperse and size-tunable magnetic iron oxide nanoparticles (NPs) have been synthesized by thermal decomposition of an iron oleate complex at 310 °C in the presence of oleylamine and oleic acid. The diameters of the as-synthesized iron oxide NPs decrease with increasing concentrations of iron oleate complex and oleic acid/oleylamine. In addition, the size-dependent crystallinity and magnetic properties of iron oxide NPs are presented. It is found that larger iron oxide NPs have a higher degree of crystallinity and saturation magnetization. More importantly, various M-iron oxide heterostructures (M = Au, Ag, Pt, Pd) have been successfully fabricated by using the same synthesis procedure. The iron oxide NPs are grown over the pre-made metal seeds through a seed-mediated growth process. The physicochemical properties of Au-Fe3O4 heterostructures have been characterized by X-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry and UV-vis spectroscopy. The as-synthesized Au-Fe3O4 heterostructures show a red-shift in surface plasmon resonance peak compared with Au NPs and similar magnetic properties to Fe3O4 NPs. The heterojunction effects present in such nanostructures offer the opportunity to tune the irphysicochemical properties. Therefore, this synthesis process can be regarded as an efficient way to fabricate a series of heterostructures for a variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, A. H.; Salabas, E. L.; Schuth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244.

    Article  CAS  Google Scholar 

  2. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110.

    Article  CAS  Google Scholar 

  3. Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. H. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 2009, 38, 2532–2542.

    Article  CAS  Google Scholar 

  4. Jolivet, J. P.; Chaneac, C.; Tronc, E. Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. Commun. 2004, 481–487.

  5. Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782–2785.

    Article  CAS  Google Scholar 

  6. Si, S. F.; Li, C. H.; Wang, X.; Yu, D. P.; Peng, Q.; Li, Y. D. Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth. Des. 2005, 5, 391–393.

    Article  CAS  Google Scholar 

  7. Sun, S.; Zeng, H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204–8205.

    Article  CAS  Google Scholar 

  8. Park, J.; Lee, E.; Hwang, N. M.; Kang, M. S.; Kim, S. C.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kini, J. Y.; Park, J. H.; Hyeon, T. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 2872–2877

    Article  CAS  Google Scholar 

  9. Kovalenko, M. V.; Bodnarchuk, M. I.; Lechner, R. T.; Hesser, G.; Schaffler, F.; Heiss, W. Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: The case of inverse spinel iron oxide. J. Am. Chem. Soc. 2007, 129, 6352–6353.

    Article  CAS  Google Scholar 

  10. Shavel, A.; Rodriguez-Gonzalez, B.; Pacifico, J.; Spasova, M.; Farle, M.; Liz-Marzan, L. M. Shape control in iron oxide nanocrystal synthesis, induced by trioctylammonium ions. Chem. Mater. 2009, 21, 1326–1332.

    Article  CAS  Google Scholar 

  11. Zeng, H.; Rice, P. M.; Wang, S. X.; Sun, S. H. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J. Am. Chem. Soc. 2004, 126, 11458–11459.

    Article  CAS  Google Scholar 

  12. Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.

    Article  CAS  Google Scholar 

  13. Jana, N. R.; Chen, Y. F.; Peng, X. G. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16, 3931–3935.

    Article  CAS  Google Scholar 

  14. Cheon, J. W.; Kang, N. J.; Lee, S. M.; Lee, J. H.; Yoon, J. H.; Oh, S. J. Shape evolution of single-crystalline iron oxide nanocrystals. J. Am. Chem. Soc. 2004, 126, 1950–1951.

    Article  CAS  Google Scholar 

  15. Park, J.; An, K. J.; Hwang, Y. S.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

    Article  CAS  Google Scholar 

  16. Gu, H. W.; Yang, Z. M.; Gao, J. H.; Chang, C. K.; Xu, B. Heterodimers of nanoparticles: Formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. J. Am. Chem. Soc. 2005, 127, 34–35.

    Article  CAS  Google Scholar 

  17. Jiang, J.; Gu, H. W.; Shao, H. L.; Devlin, E.; Papaefthymiou, G. C.; Ying, J. Y. Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv. Mater. 2008, 20, 4403–4407.

    Article  CAS  Google Scholar 

  18. Wang, C.; Xu, C. J.; Zeng, H.; Sun, S. H. Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv. Mater. 2009, 21, 3045–3052.

    Article  CAS  Google Scholar 

  19. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379–382.

    Article  CAS  Google Scholar 

  20. Choi, S. H.; Na, B. H.; Park, Y. I.; An, K.; Kwon, S. G.; Jang, Y.; Park, M.; Moon, J.; Son, J. S.; Song, I. C.; Moon, W. K.; Hyeon, T. Simple and generalized synthesis of oxide-metal heterostructured nanoparticles and their applications in multimodal biomedical probes. J. Am. Chem. Soc. 2008, 130, 15573–15580.

    Article  CAS  Google Scholar 

  21. Peng, S.; Lei, C. H.; Ren, Y.; Cook, R. E.; Sun, Y. G. Plasmonic/magnetic bifunctional nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 3158–3163.

    Article  CAS  Google Scholar 

  22. Jang, Y.; Chung, J.; Kim, S.; Jun, S. W.; Kim, B. H.; Lee, D. W.; Kim, B. M.; Hyeon, T. Simple synthesis of Pd-Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions. Phys. Chem. Chem. Phys. 2011, 13, 2512–2516.

    Article  CAS  Google Scholar 

  23. Peng, S.; Lee, Y.; Wang, C.; Yin, H.; Dai, S.; Sun, S. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 2008, 1, 229–234.

    Article  CAS  Google Scholar 

  24. Chen, W.; Yu, R.; Li, L. L.; Wang, A. N.; Peng, Q.; Li, Y. D. A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew. Chem. Int. Ed. 2010, 49, 2917–2921.

    CAS  Google Scholar 

  25. Mazumder, V.; Sun, S. H. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589.

    Article  CAS  Google Scholar 

  26. Xie, J.; Peng, S.; Brower, N.; Pourmand, N.; Wang, S. X.; Sun, S. H. One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl. Chem. 2006, 78, 1003–1014.

    Article  CAS  Google Scholar 

  27. Sun, S. H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 2006, 18, 393–403.

    Article  CAS  Google Scholar 

  28. Xu, Z. C.; Shen, C. M.; Hou, Y. L.; Gao, H. J.; Sun, S. S. Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 2009, 21, 1778–1780.

    Article  CAS  Google Scholar 

  29. Shen, L. F.; Laibinis, P. E.; Hatton, T. A. Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces. Langmuir 1999, 15, 447–453.

    Article  CAS  Google Scholar 

  30. Cornell, M. R.; Schwertmann, U. The Iron Oxides; VCH: New York, 1996; p. 117.

    Google Scholar 

  31. Zhen, G.; Muir, B. W.; Moffat, B. A.; Harbour, P.; Murray, K. S.; Moubaraki, B.; Suzuki, K.; Madsen, I.; Agron-Olshina, N.; Waddington, L.; Mulvaney, P.; Hartley, P. G. Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. J. Phys. Chem. C, 2011, 115, 327–334.

    Article  CAS  Google Scholar 

  32. Morales, M. P.; Veintemillas-Verdaguer, S.; Montero, M. I.; Serna, C. J. Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem. Mater. 1999, 11, 3058–3064.

    Article  CAS  Google Scholar 

  33. Lee, Y.; Loew, A.; Sun, S. Surface- and structure-dependent catalytic activity of Au nanoparticles for oxygen reduction reaction. Chem. Mater. 2010, 22, 755–761.

    Article  CAS  Google Scholar 

  34. Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

    Article  CAS  Google Scholar 

  35. Hiramatsu, H.; Osterloh, F. E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 2004, 16, 2509–2511.

    Article  CAS  Google Scholar 

  36. Zhang, H. T.; Ding, J.; Chow, G. M. Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir 2008, 24, 375–378.

    Article  CAS  Google Scholar 

  37. Teng, X. W.; Yang, H. Synthesis of platinum multipods: An induced anisotropic growth. Nano Lett. 2005, 5, 885–891.

    Article  CAS  Google Scholar 

  38. Song, H; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P. D. Pt nanocrystals: Shape control and Langmuir-Blodgett monolayer formation. J. Phys. Chem. B 2005, 109, 188–193.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reuy-an Doong or Yadong Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Fh., Chen, W., Liao, YH. et al. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 4, 1223–1232 (2011). https://doi.org/10.1007/s12274-011-0173-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0173-2

Keywords

Navigation