Skip to main content
Log in

Temperature-dependent photoconductance of heavily doped ZnO nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ga-doped ZnO nanowires have been synthesized by a pulsed laser chemical vapor deposition method. The crystal structure and photoluminescence spectra indicate that the dopant atoms are well integrated into the ZnO wurtzite lattice. The photocurrent properties at different temperatures have been systematically investigated for nanowires configured as a three-terminal device. Among the experimental highlights, a pronounced semiconductor-to-metal transition occurs upon UV band-to-band excitation. This is a consequence of the reduction in electron mobility arising from the drastically enhanced Coulomb interactions and surface scattering. Another feature is the reproducible presence of two resistance valleys at 220 and 320 K upon light irradiation. This phenomenon originates from the trapping and detrapping processes in the impurity band arising from the native defects as well as the extrinsic Ga dopants. This work demonstrates that due to the dimensional confinement in quasi-one-dimensional structures, enhanced Coulomb interaction, surface scattering, and impurity states can significantly influence charge transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, J. G.; Chang, P. C.; Fan, Z. Y. Quasi-one-dimensional metal oxide materials-Synthesis, properties and applications. Mater. Sci. Eng. R. 2006, 52, 49–91.

    Article  Google Scholar 

  2. Hoyer, P.; Weller, H. Potential-dependent electron injection in nanoporous colloidal ZnO films. J. Phys. Chem. 1995, 99, 14096–14100.

    Article  CAS  Google Scholar 

  3. Hotchandani, S.; Kamat, P. V. Photoelectrochemistry of semiconductor ZnO particulate Films. J. Electrochem. Soc. 1992, 139, 1630–1634.

    Article  CAS  Google Scholar 

  4. Ju, S.; Li, J. Y.; Pimparkar, N.; Alam, M. A.; Chang, R. P. H.; Janes, D. B. N-type field-effect transistors using multiple Mg-doped ZnO nanorods. IEEE T Nanotechnol. 2007, 6, 390–395.

    Article  Google Scholar 

  5. Pan, H.; Zhu, Y. W.; Sun, H.; Feng, Y. P.; Sow, C. H.; Lin, J. Y. Electroluminescence and field emission of Mg-doped ZnO tetrapods. Nanotechnology 2006, 17, 5096–5100.

    Article  CAS  Google Scholar 

  6. Yuan, G. D.; Zhang, W. J.; Jie, J. S.; Fan, X.; Tang, J. X.; Shafiq, I.; Ye, Z. Z.; Lee, C. S.; Lee, S. T. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Adv. Mater. 2008, 20, 168–173.

    Article  CAS  Google Scholar 

  7. Bae, S. Y.; Na, C. W.; Kang, J. H.; Park, J. Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. J. Phys. Chem. B 2005, 109, 2526–2531.

    Article  CAS  Google Scholar 

  8. Thompson, R. S.; Li, D.; Witte, C. M.; Lu, J. G. Weak localization and electron-electron interactions in indium-doped ZnO nanowires. Nano Lett. 2009, 9, 3991–3995.

    Article  CAS  Google Scholar 

  9. He, H.; Lao, C. S.; Chen, L. J.; Davidovic, D.; Wang, Z. L. Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. J. Amer. Chem. Soc. 2005, 127, 16376–16377.

    Article  CAS  Google Scholar 

  10. Yamamoto, T.; Katayama-Yoshida, H. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Jpn. J. Appl. Phys. Part 2 1999, 38, L166–L169.

    Article  CAS  Google Scholar 

  11. Salfi, J.; Philipose, U.; Aouba, S.; Nair, S. V.; Ruda, H. E. Electron transport in degenerate Mn-doped ZnO nanowires. Appl. Phys. Lett. 2007, 90, 032104.

    Article  Google Scholar 

  12. Liang, W. J.; Yuhas, B. D.; Yang, P. D. Magnetotransport in Co-doped ZnO nanowires. Nano Lett. 2009, 9, 892–896.

    Article  CAS  Google Scholar 

  13. Duan, X. F.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298–302.

    Article  CAS  Google Scholar 

  14. Chang, P. C.; Fan, Z.; Chien, C. J.; Stichtenoth, D.; Ronning, C.; Lu, J. G. High-performance ZnO nanowire field effect transistors. Appl. Phys. Lett. 2006, 89, 133113.

    Article  Google Scholar 

  15. Thompson, R. S.; Li, D. D.; Witte, C. M.; Lu, J. G. Weak localization and electron-electron interactions in indium-doped ZnO nanowires. Nano Lett. 2009, 9, 3991–3995.

    Article  CAS  Google Scholar 

  16. Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

    Article  CAS  Google Scholar 

  17. Fan, Z. Y.; Wang, D. W.; Chang, P. C.; Tseng, W. Y.; Lu, J. G. ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 2004, 85, 5923–5925.

    Article  CAS  Google Scholar 

  18. Bao, J.; Shalish, I.; Su, Z.; Gurwitz, R.; Capasso, F.; Wang, X.; Ren, Z. Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires. Nanoscale Res. Lett. 2011, 6, 404.

    Article  Google Scholar 

  19. Chang, P. C.; Lu, J. G. Temperature dependent conduction and UV induced metal-to-insulator transition in ZnO nanowires. Appl. Phys. Lett. 2008, 92, 212113.

    Article  Google Scholar 

  20. Chiu, S. P.; Lin, Y. H.; Lin, J. J. Electrical conduction mechanisms in natively doped ZnO nanowires. Nanotechnology 2009, 20, 015203.

    Article  Google Scholar 

  21. Look, D. C.; Hemsky, J. W.; Sizelove, J. R. Residual native shallow donor in ZnO. Phys. Rev. Lett. 1999, 82, 2552–2555.

    Article  CAS  Google Scholar 

  22. Seghier, D.; Gislason, H. P. Characterization of donor states in ZnO. Physica B 2007, 401, 404–407.

    Article  Google Scholar 

  23. Liao, Z. M.; Lu, Y.; Xu, J.; Zhang, J. M.; Yu, D. P. Temperature dependence of photoconductivity and persistent photoconductivity of single ZnO nanowires. Appl. Phys. A-Mater. 2009, 95, 363–366.

    Article  CAS  Google Scholar 

  24. Nayak, J.; Kasuya, J.; Watanabe, A.; Nozaki, S. Persistent photoconductivity in ZnO nanorods deposited on electro-deposited seed layers of ZnO. J. Phys.-Condensed Matt. 2008, 20, 195222.

    Article  Google Scholar 

  25. Ahn, S. E.; Ji, H. J.; Kim, K.; Kim, G. T.; Bae, C. H.; Park, S. M.; Kim, Y. K.; Ha, J. S. Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire. Appl. Phys. Lett. 2007, 90, 153106.

    Article  Google Scholar 

  26. Leiter, F. H.; Alves, H. R.; Hofstaetter, A.; Hofmann, D. M.; Meyer, B. K. The oxygen vacancy as the origin of a green emission in undoped ZnO. Phys. Status Solidi B 2001, 226, R4–R5.

    Article  CAS  Google Scholar 

  27. van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photo-excitation. J. Phys. Chem. B 2000, 104, 1715–1723.

    Article  Google Scholar 

  28. Stichtenoth, D.; Ronning, C.; Niermann, T.; Wischmeier, L.; Voss, T.; Chien, C. J.; Chang, P. C.; Lu, J. G. Optical size effects in ultrathin ZnO nanowires. Nanotechnology 2007, 18, 435701.

    Article  Google Scholar 

  29. Zhang, B. P.; Binh, N. T.; Segawa, Y.; Wakatsuki, K.; Usami, N. Optical properties of ZnO rods formed by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2003, 83, 1635–1637.

    Article  CAS  Google Scholar 

  30. Yamamoto, A.; Satake, Y.; Atsuta, S.; Taguchi, Y.; Ishizumi, A. The origins of photoluminescence peaks in ZnO nanocrystals revealed by microscopic photoluminescence imaging spectroscopy. J. Phys. Soc. Jpn. 2010, 79, 054701.

    Article  Google Scholar 

  31. Meyer, B. K.; Alves, H.; Hofmann, D. M.; Kriegseis, W.; Forster, D.; Bertram, F.; Christen, J.; Hoffmann, A.; Strassburg, M.; Dworzak, M.; Haboeck, U.; Rodina, A. V. Bound exciton and donor-acceptor pair recombinations in ZnO. Phys. Status Solidi B 2004, 241, 231–260.

    Article  CAS  Google Scholar 

  32. Chang, P. C.; Chien, C. J.; Stichtenoth, D.; Ronning, C.; Lu, J. G. Finite size effect in ZnO nanowires. Appl. Phys. Lett. 2007, 90, 113101.

    Article  Google Scholar 

  33. Johnston, K.; Henry, M. O.; McCabe, D.; McGlynn, E.; Dietrich, M.; Alves, E.; Xia, M. Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques. Phys. Rev. B 2006, 73, 165212.

    Article  Google Scholar 

  34. Ko, H. J.; Chen, Y. F.; Hong, S. K.; Wenisch, H.; Yao, T.; Look, D. C. Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 2000, 77, 3761–3763.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia G. Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Zhao, L., Wu, R. et al. Temperature-dependent photoconductance of heavily doped ZnO nanowires. Nano Res. 4, 1110–1116 (2011). https://doi.org/10.1007/s12274-011-0158-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0158-1

Keywords

Navigation