Skip to main content
Log in

The origin of wrinkles on transferred graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

When two-dimensional graphene is exfoliated from three-dimensional highly oriented pyrolytic graphite (HOPG), ripples or corrugations always exist due to the intrinsic thermal fluctuations. Surface-grown graphenes also exhibit wrinkles, which are larger in dimension and are thought to be caused by the difference in thermal expansion coefficients between graphene and the underlying substrate in the cooling process after high temperature growth. For further characterization and applications, it is necessary to transfer the surface-grown graphenes onto dielectric substrates, and other wrinkles are generated during this process. Here, we focus on the wrinkles of transferred graphene and demonstrate that the surface morphology of the growth substrate is the origin of the new wrinkles which arise in the surface-to-surface transfer process; we call these morphology-induced wrinkles. Based on a careful statistical analysis of thousands of atomic force microscopy (AFM) topographic data, we have concluded that these wrinkles on transferred few-layer graphene (typically 1–3 layers) are determined by both the growth substrate morphology and the transfer process. Depending on the transfer medium and conditions, most of the wrinkles can be either erased or preserved. Our work suggests a new route for graphene engineering involving structuring the growth substrate and tailoring the transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau, L.; Lifshits, E.; Pitaevskii, L. Statistical Physics, Part I; Pergamon: Oxford, 1980.

    Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  3. Geim, A.; Novoselov, K. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  4. Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339–341.

    Article  CAS  Google Scholar 

  5. Katsnelson, M.; Geim, A. Electron scattering on microscopic corrugations in graphene. Phil. Trans. R. Soc. A 2008, 366, 195–204.

    Article  CAS  Google Scholar 

  6. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Ponomarenko, L. A.; Jiang, D.; Geim, A. K. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 2006, 97, 016801.

    Article  CAS  Google Scholar 

  7. Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; Von Klitzing, K.; Yacoby, A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144–148.

    Article  CAS  Google Scholar 

  8. Elias, D.; Nair, R.; Mohiuddin, T.; Morozov, S.; Blake, P.; Halsall, M.; Ferrari, A.; Boukhvalov, D.; Katsnelson, M.; Geim, A. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.

    Article  CAS  Google Scholar 

  9. Kim, K.; Zhao, Y.; Jang, H.; Lee, S.; Kim, J.; Ahn, J.; Kim, P.; Choi, J.; Hong, B. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  CAS  Google Scholar 

  10. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  CAS  Google Scholar 

  11. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  12. Geim, A. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  CAS  Google Scholar 

  13. Liu, N.; Fu, L.; Dai, B.; Yan, K.; Liu, X.; Zhao, R.; Zhang, Y.; Liu, Z. Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. 2011, 11, 297–303.

    Article  CAS  Google Scholar 

  14. Guinea, F.; Katsnelson, M. I.; Vozmediano, M. A. H. Midgap states and charge inhomogeneities in corrugated graphene. Phys. Rev. B 2008, 77, 075422.

    Article  Google Scholar 

  15. Obraztsov, A.; Obraztsova, E.; Tyurnina, A.; Zolotukhin, A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45, 2017–2021.

    Article  CAS  Google Scholar 

  16. Reina, A.; Son, H. B.; Jiao, L. Y.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Transferring and identification of single- and few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741–17744.

    Article  CAS  Google Scholar 

  17. Liang, X.; Fu, Z.; Chou, S. Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 2007, 7, 3840–3844.

    Article  CAS  Google Scholar 

  18. Reina, A.; Thiele, S.; Jia, X.; Bhaviripudi, S.; Dresselhaus, M.; Schaefer, J.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

    Article  CAS  Google Scholar 

  19. Thiele, S.; Reina, A.; Healey, P.; Kedzierski, J.; Wyatt, P.; Hsu, P.; Keast, C.; Schaefer, J.; Kong, J. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 2010, 21, 015601.

    Article  Google Scholar 

  20. Copel, M.; Reuter, M. C.; Kaxiras, E.; Tromp, R. M. Surfactants in epitaxial growth. Phys. Rev. Lett. 1989, 63, 632–635.

    Article  CAS  Google Scholar 

  21. Li, X.; Cai, W.; Colombo, L.; Ruoff, R. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

    Article  CAS  Google Scholar 

  22. Zhang, Z.; Duan, Q.; Wang, Z. Micro-mechanisms of fatigure damage in copper crystals. Acta Metall. Sin. 2005, 41, 1143–1149.

    CAS  Google Scholar 

  23. N’Diaye, A. T.; van Gastel, R.; Martinez-Galera, A. J.; Coraux, J.; Hattab, H.; Wall, D.; Meyer zu Heringdorf, F. J.; Horn-von Hoegen, M.; Gomez-Rodriguez, J. M.; Poelsema, B.; Busse, C.; Michely, T. In situ observation of stress relaxation in epitaxial graphene. New J. Phys. 2009, 11, 113056.

    Article  Google Scholar 

  24. Chae, S. J.; Gunes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfan Liu.

Additional information

These authors contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Pan, Z., Fu, L. et al. The origin of wrinkles on transferred graphene. Nano Res. 4, 996–1004 (2011). https://doi.org/10.1007/s12274-011-0156-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0156-3

Keywords

Navigation