Skip to main content
Log in

3D-Printed Coronary Implants Are Effective for Percutaneous Creation of Swine Models with Focal Coronary Stenosis

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Reliable, closed-chest methods for creating large animal models of acute myocardial hypoperfusion are limited. We demonstrated the feasibility and efficacy of using magnetic resonance (MR)–compatible 3D-printed coronary implants for establishing swine models of myocardial hypoperfusion. We designed, manufactured, and percutaneously deployed implants in 13 swine to selectively create focal coronary stenosis. To test the efficacy of the implants to cause hypoperfusion or ischemia in the perfused territory, we evaluated regional wall motion, myocardial perfusion, and infarction using MR imaging. The overall swine survival rate was 85% (11 of 13). The implant retrieval rate was 92% (12 of 13). Fluoroscopic angiography confirmed focal stenosis. Cine and perfusion MRI showed regional wall motion abnormalities and inducible ischemia, respectively. Late gadolinium enhancement and histopathology showed no myocardial infarction. Our minimally invasive technique has promising applications for validation of new diagnostic methods in cardiac MR.

Our new minimally invasive, percutaneous method for creating swine models of acute focal coronary stenosis can be used for magnetic resonance imaging studies of myocardial ischemia. Comparable to existing methods in its efficacy and reliability, this rapid prototyping technique will allow researchers to more easily conduct translational cardiac imaging studies of coronary artery disease in large animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

FOV:

Field of view

IHD:

Ischemic heart disease

MRI:

Magnetic resonance imaging

TE:

Echo time

TI:

Inversion time

TR:

Repetition time

TTC:

Triphenyltetrazolium chloride

References

  1. Keeran, K. J., Jeffries, K. R., Zetts, A. D., Taylor, J., Kozlov, S., & Hunt, T. J. (2017). A chronic cardiac ischemia model in swine using an ameroid constrictor. Journal of Visualized Experiments, 128. https://doi.org/10.3791/56190.

  2. Litvak, J., Siderides, L. E., & Vineberg, A. M. (1957). The experimental production of coronary artery insufficiency and occlusion. American Heart Journal, 53(4), 505–518. https://doi.org/10.1016/0002-8703(57)90359-9.

    Article  CAS  PubMed  Google Scholar 

  3. Hughes, G. C., Post, M. J., Simons, M., & Annex, B. H. (2015). Translational physiology: porcine models of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis. Journal of Applied Physiology, 94(5), 1689–1701. https://doi.org/10.1152/japplphysiol.00465.2002.

    Article  Google Scholar 

  4. Robich, M. P., Chu, L. M., Burgess, T. A., Feng, J., Han, Y., Nezafat, R., et al. (2012). Resveratrol preserves myocardial function and perfusion in remote nonischemic myocardium in a swine model of metabolic syndrome. Journal of the American College of Surgeons, 215(5), 681–689. https://doi.org/10.1016/j.jamcollsurg.2012.06.417.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Robich, M. P., Osipov, R. M., Nezafat, R., Feng, J., Clements, R. T., Bianchi, C., et al. (2010). Resveratrol improves myocardial perfusion in a swine model of hypercholesterolemia and chronic myocardial ischemia. Circulation, 122(11 SUPPL. 1), S142–S149. https://doi.org/10.1161/CIRCULATIONAHA.109.920132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sabe, A. A., Elmadhun, N. Y., Robich, M. P., Dalal, R. S., & Sellke, F. W. (2013). Does resveratrol improve insulin signaling in chronically ischemic myocardium? Journal of Surgical Research, 183(2), 531–536. https://doi.org/10.1016/j.jss.2013.03.004.

    Article  CAS  PubMed  Google Scholar 

  7. Kraitchman, D., Bluemke, D., Chin, B., & Heldman, A. (2000). A minimally invasive method for creating coronary stenosis in a swine model for MRI and SPECT imaging. Investigative Radiology, 35(7), 445–451. https://doi.org/10.1097/00004424-200007000-00008.

    Article  CAS  PubMed  Google Scholar 

  8. Gerber, B. L., Boston, R. C., Kraitchman, D. L., Chin, B. B., Lima, J. A. C., Bluemke, D. A., & Heldman, A. W. (2007). Single-vessel coronary artery stenosis: myocardial perfusion imaging with Gadomer-17 first-pass MR imaging in a swine model of comparison with gadopentetate dimeglumine. Radiology, 225(1), 104–112. https://doi.org/10.1148/radiol.2251011377.

    Article  Google Scholar 

  9. Wu, M., Bogaert, J., D’Hooge, J., Sipido, K., Maes, F., Dymarkowski, S., et al. (2010). Closed-chest animal model of chronic coronary artery stenosis. Assessment with magnetic resonance imaging. International Journal of Cardiovascular Imaging, 26(3), 299–308. https://doi.org/10.1007/s10554-009-9551-1.

    Article  PubMed  Google Scholar 

  10. Foin, N., Sen, S., Petraco, R., Nijjer, S., Torii, R., Kousera, C., et al. (2013). Method for percutaneously introducing, and removing, anatomical stenosis of predetermined severity in vivo: the “stenotic stent.”. Journal of Cardiovascular Translational Research, 6(4), 640–648. https://doi.org/10.1007/s12265-013-9476-x.

    Article  PubMed  Google Scholar 

  11. Rissanen, T. T., Nurro, J., Halonen, P. J., Tarkia, M., Saraste, A., Rannankari, M., et al. (2013). The bottleneck stent model for chronic myocardial ischemia and heart failure in pigs. American Journal of Physiology - Heart and Circulatory Physiology, 305(9), 1297–1308. https://doi.org/10.1152/ajpheart.00561.2013.

    Article  CAS  Google Scholar 

  12. Krombach, G. A., Kinzel, S., Mahnken, A. H., Günther, R. W., & Buecker, A. (2005). Minimally invasive close-chest method for creating reperfused or occlusive myocardial infarction in swine. Investigative Radiology, 40(1), 14–18.

    PubMed  Google Scholar 

  13. Nguyen, K.-L., Shao, J., Ghodrati, V. K., Ajijola, O. A., Dharmakumar, R., Finn, J. P., & Hu, P. (2019). Ferumoxytol-enhanced CMR for vasodilator stress testing: a feasibility study. JACC: Cardiovascular Imaging, 12(8), 1582–1584. https://doi.org/10.1016/j.jcmg.2019.01.024.

    Article  PubMed  Google Scholar 

  14. Giannopoulos, A. A., Mitsouras, D., Yoo, S. J., Liu, P. P., Chatzizisis, Y. S., & Rybicki, F. J. (2016). Applications of 3D printing in cardiovascular diseases. Nature Reviews Cardiology, 13(12), 701–718. https://doi.org/10.1038/nrcardio.2016.170.

    Article  CAS  PubMed  Google Scholar 

  15. de Oliveira-Santos, M., Oliveira-Santos, E., Gonçalves, L., & Silva Marques, J. (2019). Cardiovascular three-dimensional printing in non-congenital percutaneous interventions. Heart, Lung & Circulation, 28(10), 1525–1534. https://doi.org/10.1016/j.hlc.2019.04.020.

    Article  Google Scholar 

  16. Forte, M. N. V., Hussain, T., Roest, A., Gomez, G., Jongbloed, M., Simpson, J., et al. (2019). Living the heart in three dimensions: applications of 3D printing in CHD. Cardiology in the Young, 29(6), 733–743. https://doi.org/10.1017/S1047951119000398.

    Article  PubMed  Google Scholar 

  17. Alonzo, M., AnilKumar, S., Roman, B., Tasnim, N., & Joddar, B. (2019). 3D bioprinting of cardiac tissue and cardiac stem cell therapy. Translational Research, 211, 64–83. https://doi.org/10.1016/j.trsl.2019.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee, W., Hong, Y., & Dai, G. (2019). 3D bioprinting of vascular conduits for pediatric congenital heart repairs. Translational Research, 211, 35–45. https://doi.org/10.1016/j.trsl.2019.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hollowed, J. J., Colbert, C. M., Currier, J. W., & Nguyen, K.-L. (2020). Novel percutaneous approach for deployment of 3D printed coronary stenosis implants in swine models of ischemic heart disease. Journal of Visualized Experiments, e60729. https://doi.org/10.3791/60729.

  20. Shaw, L. J., Berman, D. S., Maron, D. J., Mancini, G. B. J., Hayes, S. W., Hartigan, P. M., et al. (2008). Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation, 117(10), 1283–1291. https://doi.org/10.1161/CIRCULATIONAHA.107.743963.

    Article  PubMed  Google Scholar 

  21. Liu, A., Wijesurendra, R. S., Liu, J. M., Greiser, A., Jerosch-Herold, M., Forfar, J. C., et al. (2018). Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary disease. Journal of the American College of Cardiology, 71(9), 957–968. https://doi.org/10.1016/j.jacc.2017.11.071.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Husso, M., Nissi, M. J., Kuivanen, A., Halonen, P., Tarkia, M., Teuho, J., et al. (2019). Quantification of porcine myocardial perfusion with modified dual bolus MRI-a prospective study with a PET reference. BMC Medical Imaging, 19(1), 1–11. https://doi.org/10.1186/s12880-019-0359-8.

    Article  Google Scholar 

  23. Fishbein, M. C., Meerbaum, S., Rit, J., Lando, U., Kanmatsuse, K., Mercier, J. C., et al. (1981). Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. American Heart Journal, 101(5), 593–600. https://doi.org/10.1016/0002-8703(81)90226-X.

    Article  CAS  PubMed  Google Scholar 

  24. Fieno, D. S., Kim, R. J., Chen, E. L., Lomasney, J. W., Klocke, F. J., & Judd, R. M. (2000). Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. Journal of the American College of Cardiology, 36(6), 1985–1991. https://doi.org/10.1016/S0735-1097(00)00958-X.

    Article  CAS  PubMed  Google Scholar 

  25. Lindsey, M. L., Bolli, R., Canty, J. M., Du, X.-J., Frangogiannis, N. G., Frantz, S., et al. (2018). Guidelines for experimental models of myocardial ischemia and infarction. American journal of physiology. Heart and Circulatory Physiology, 314(4), H812–H838. https://doi.org/10.1152/ajpheart.00335.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mahrholdt, H., Wagner, A., Judd, R. M., Sechtem, U., & Kim, R. J. (2005). Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. European Heart Journal. https://doi.org/10.1093/eurheartj/ehi258.

  27. Liao, J., Huang, W., & Liu, G. (2016). Animal models of coronary heart disease. Journal of Biomedical Research, 30(1), 3–10. https://doi.org/10.7555/jbr.30.20150051.

    Article  Google Scholar 

  28. Tanimoto, A., Kawaguchi, H., Yoshida, H., Misumi, K., Fujiki, M., Miyoshi, N., et al. (2011). Microminipig, a non-rodent experimental animal optimized for life science research: novel atherosclerosis model induced by high fat and cholesterol diet. Journal of Pharmacological Sciences, 115(2), 115–121. https://doi.org/10.1254/jphs.10r17fm.

    Article  PubMed  Google Scholar 

  29. Adams, G. J., Baltazar, U., Karmonik, C., Bordelon, C., Lin, P. H., Bush, R. L., et al. (2005). Comparison of 15 different stents in superficial femoral arteries by high resolution MRI ex vivo and in vivo. Journal of Magnetic Resonance Imaging, 22(1), 125–135. https://doi.org/10.1002/jmri.20359.

    Article  PubMed  Google Scholar 

  30. Schuster, A., Sinclair, M., Zarinabad, N., Ishida, M., Van Den Wijngaard, J. P. H. M., Paul, M., et al. (2015). A quantitative high resolution voxel-wise assessment of myocardial blood flow from contrast-enhanced first-pass magnetic resonance perfusion imaging: microsphere validation in a magnetic resonance compatible free beating explanted pig heart model. European Heart Journal Cardiovascular Imaging, 16(10), 1082–1092. https://doi.org/10.1093/ehjci/jev023.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Elzinga, W. E. (1969). Ameroid constrictor: uniform closure rates and a calibration procedure. Journal of Applied Physiology, 27(3), 419–421. https://doi.org/10.1152/jappl.1969.27.3.419.

    Article  CAS  PubMed  Google Scholar 

  32. Inou, T., Tomoike, T., Watanabe, K., Kikuchi, Y., Mizukami, M., Kurozumi, T., & Nakamura, M. (1980). A newly developed X-ray transparent ameroid constrictor for study on progression of gradual coronary stenosis. Basic Research in Cardiology, 75(4), 537–543. https://doi.org/10.1007/BF01907835.

    Article  CAS  PubMed  Google Scholar 

  33. Guo, M., Liu, J., Guo, F., Shi, J., Wang, C., Bible, P. W., et al. (2018). Panax quinquefolium saponins attenuate myocardial dysfunction induced by chronic ischemia. Cellular Physiology and Biochemistry, 49(4), 1277–1288. https://doi.org/10.1159/000493407.

    Article  CAS  PubMed  Google Scholar 

  34. Biran, R., & Pond, D. (2017). Heparin coatings for improving blood compatibility of medical devices. Advanced Drug Delivery Reviews, 112, 12–23. https://doi.org/10.1016/j.addr.2016.12.002.

    Article  CAS  PubMed  Google Scholar 

  35. Bressi, E., Mangiacapra, F., Morisco, C., Barbato, E., & Sticchi, A. (2018). Fractional flow reserve (FFR) as a guide to treat coronary artery disease. Expert Review of Cardiovascular Therapy, 16(7), 465–477. https://doi.org/10.1080/14779072.2018.1489236.

    Article  CAS  PubMed  Google Scholar 

  36. Hecht, H. S., Narula, J., & Fearon, W. F. (2016). Fractional flow reserve and coronary computed tomographic angiography: a review and critical analysis. Circulation Research, 119(2), 300–316. https://doi.org/10.1161/CIRCRESAHA.116.307914.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank staff members at the UCLA Lux Lab, the UCLA Translational Research Imaging Center (TRIC), and the Division of Laboratory Animal Medicine at UCLA for their assistance.

Funding

This work is supported by American Heart Association Transformational Award 18TPA34170049 and pilot funding from the Department of Radiology and Medicine at David Geffen School of Medicine at UCLA. K.L.N. is supported by funding from the American Heart Association (18TPA34170049), Veterans Health Administration (CX001901), and NIH (HL137562). O.A.A. is supported by NIH (HL142045). P.H. is supported by funding from NIH (HL127153), the American Heart Association (18TPA34170049), and the Veterans Health Administration (CX001901). R.D is supported by funding from NIH (HL133407, HL136578, and HL147133).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design (KLN, PH, CMC), analysis and interpretation (CMC, KLN), data collection (CMC, KLN, JS, JHH, JWC, OAA, SMD, GAF), drafting the article (CMC, KLN), critical revision of the article (all authors), final approval of the article (all authors), overall responsibility (KLN)

Corresponding author

Correspondence to Kim-Lien Nguyen.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Human Studies

No human studies were carried out by the authors for this article.

Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by our Institutional Animal Care and Use Committee (protocol no. 015-03D). With permission, S&S Farms supplied swine models purposely bred for biomedical research. S&S Farms Domestic pigs are a Yorkshire/Landrace hybrid originally derived from a specific pathogen-free herd.

Additional information

Associate Editor Adrian Chester oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Clinical Relevance

Reliability of closed-chest techniques to create swine models of acute coronary stenosis remains limited. This work demonstrates the feasibility and efficacy of a rapid prototyping method using 3D-printed, heparin-coated, coronary stenosis implants to percutaneously create swine models of myocardial hypoperfusion and ischemia, which can be used to evaluate novel diagnostic MRI methods for ischemic coronary heart disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colbert, C.M., Shao, J., Hollowed, J.J. et al. 3D-Printed Coronary Implants Are Effective for Percutaneous Creation of Swine Models with Focal Coronary Stenosis. J. of Cardiovasc. Trans. Res. 13, 1033–1043 (2020). https://doi.org/10.1007/s12265-020-10018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10018-3

Keywords

Subject Codes

Navigation