Skip to main content

Advertisement

Log in

A Needleless Liquid Jet Injection Delivery Method for Cardiac Gene Therapy: a Comparative Evaluation Versus Standard Routes of Delivery Reveals Enhanced Therapeutic Retention and Cardiac Specific Gene Expression

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

This study evaluates needleless liquid jet method and compares it with three common experimental methods: (1) intramuscular injection (IM), (2) left ventricular intracavitary infusion (LVIC), and (3) LV intracavitary infusion with aortic and pulmonary occlusion (LVIC-OCCL). Two protocols were executed. First (n = 24 rats), retention of dye was evaluated 10 min after delivery in an acute model. The acute study revealed the following: significantly higher dye retention (expressed as % myocardial cross-section area) in the left ventricle in both the liquid jet [52 ± 4] % and LVIC-OCCL [58 ± 3] % groups p < 0.05 compared with IM [31 ± 8] % and LVIC [35 ± 4] %. In the second (n = 16 rats), each animal received adeno-associated virus encoding green fluorescent protein (AAV.EGFP) at a single dose with terminal 6-week endpoint. In the second phase with AAV.EGFP at 6 weeks post-delivery, a similar trend was found with liquid jet [54 ± 5] % and LVIC-OCCL [60 ± 8] % featuring more LV expression as compared with IM [30 ± 9] % and LVIC [23 ± 9] %. The IM and LVIC-OCCL cross sections revealed myocardial fibrosis. With more detailed development in future model studies, needleless liquid jet delivery offers a promising strategy to improve direct myocardial delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J., et al. (2014). Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation, 129(3), e28–e292.

    Article  PubMed  Google Scholar 

  2. Brinks, H., & Koch, W. J. (2010). βARKct: a therapeutic approach for improved adrenergic signaling and function in heart disease. Journal of Cardiovascular Translational Research, 3, 499–506.

    Article  PubMed  Google Scholar 

  3. Kairouz, V., Lipskaia, L., Hajjar, R. J., & Chemaly, E. R. (2012). Molecular targets in heart failure gene therapy: current controversies and translational perspectives. Annals of the New York Academy of Sciences, 1254, 42–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Tang, T., Gao, M. H., & Hammond, H. K. (2012). Prospects for gene transfer for clinical heart failure. Gene Therapy, 19, 606–612.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Taimeh, Z., Loughran, J., Birks, E. J., & Bolli, R. (2013). Vascular endothelial growth factor in heart failure. Nature Reviews Cardiology, 10, 519–530.

    Article  CAS  PubMed  Google Scholar 

  6. Vatner, S. F. (2005). FGF induces hypertrophy and angiogenesis in hibernating myocardium. Circulation Research, 96, 705–707.

    Article  CAS  PubMed  Google Scholar 

  7. Jaski, B. E., Jessup, M. L., Mancini, D. M., Cappola, T. P., Pauly, D. F., Greenberg, B., Borow, K., Dittrich, H., Zsebo, K. M., & Hajjar, R. J. (2009). Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial. Journal of Cardiac Failure, 15, 171–181.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jessup, M., Greenberg, B., Mancini, D., Cappola, T., Pauly, D. F., Jaski, B., et al. (2011). calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation, 124, 304–313.

    Article  CAS  PubMed  Google Scholar 

  9. Hajjar, R. J., Zsebo, K., Deckelbaum, L., Thompson, C., Rudy, J., Yaroshinsky, A., et al. (2008). Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. Journal of Cardiac Failure, 14(5), 355–367.

    Article  CAS  PubMed  Google Scholar 

  10. Greelish, J. P., Su, L. T., Lankford, E. B., Burkman, J. M., Chen, H., Konig, S. K., et al. (1999). Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nature Medicine, 5(4), 439–443.

    Article  CAS  PubMed  Google Scholar 

  11. Calcedo, R., Morizono, H., Wang, L., McCarter, R., He, J., Jones, D., et al. (2011). Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clinical and Vaccine Immunology, 18(9), 1586–1588.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Boekstegers, P., von Degenfeld, G., Giehrl, W., Kupatt, C., Franz, W., & Steinbeck, G. (2000). Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Therapy, 7, 232–240.

    Article  CAS  PubMed  Google Scholar 

  13. Fargnoli, A. S., Katz, M. G., Yarnall, C., Isidro, A., Petrov, M., Steuerwald, N., et al. (2013). Cardiac surgical delivery of the sarcoplasmic reticulum calcium ATPase rescues myocytes in ischemic heart failure. Annals of Thoracic Surgery, 96(2), 586–595.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Rosengart, T. K., Lee, L. Y., Patel, S. R., Sanborn, T. A., Parikh, M., Bergman, G. W., et al. (1999). Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation, 100(5), 468–474.

    Article  CAS  PubMed  Google Scholar 

  15. Magovern, C. J., Mack, C. A., Zhang, J., Hahn, R. T., Ko, W., Isom, O. W., et al. (1996). Direct in vivo gene transfer to canine myocardium using a replication-deficient adenovirus vector. Annals of Thoracic Surgery, 62(2), 425–433. discussion 433-4.

    Article  CAS  PubMed  Google Scholar 

  16. Barr, E., Carroll, J., Kalynych, A. M., Tripathy, S. K., Kozarsky, K., Wilson, J. M., et al. (1994). Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Therapy, 1(1), 51–58.

    CAS  PubMed  Google Scholar 

  17. Matsuno, Y., Iwata, H., Umeda, Y., Takagi, H., Mori, Y., Miyazaki, J., et al. (2003). Nonviral gene gun mediated transfer into the beating heart. ASAIO Journal, 49(6), 641–644.

    Article  CAS  PubMed  Google Scholar 

  18. Nishizaki, K., Mazda, O., Dohi, Y., Kawata, T., Mizuguchi, K., Kitamura, S., et al. (2000). In vivo gene gun-mediated transduction into rat heart with Epstein-Barr virus-based episomal vectors. Annals of Thoracic Surgery, 70(4), 1332–1337.

    Article  CAS  PubMed  Google Scholar 

  19. Le Moigne, J., Mount, D. M., Netanyahu, N. S., & Memarsadeghi, N. (2007). A fast implementation of the ISODATA clustering algorithm. International Journal of Computational Geometry and Applications, 17, 71–103.

    Article  Google Scholar 

  20. Grines, C. L., Watkins, M. W., Helmer, G., Penny, W., Brinker, J., Marmur, J. D., et al. (2002). Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation, 105(11), 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  21. Vale, P. R., Losordo, D. W., Milliken, C. E., McDonald, M. C., Gravelin, L. M., Curry, C. M., et al. (2001). Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation, 103(17), 2138–2143.

    Article  CAS  PubMed  Google Scholar 

  22. Bish, L. T., Sleeper, M. M., Brainard, B., Cole, S., Russell, N., Withnall, E., et al. (2008). Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Molecular Therapy, 16(12), 1953–1959.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. French, B. A., Mazur, W., Geske, R. S., & Bolli, R. (1994). Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation, 90(5), 2414–2424.

    Article  CAS  PubMed  Google Scholar 

  24. Grossman, P. M., Han, Z., Palasis, M., Barry, J. J., & Lederman, R. J. (2002). Incomplete retention after direct myocardial injection. Catheterization and Cardiovascular Interventions, 55(3), 392–397.

    Article  PubMed  Google Scholar 

  25. Dixon, J. A., & Spinale, F. G. (2009). Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circulation. Heart Failure, 2, 262–271.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Guzman, R. J., Lemarchand, P., Crystal, R. G., Epstein, S. E., & Finkel, T. (1993). Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circulation Research, 73(6), 1202–1207.

    Article  CAS  PubMed  Google Scholar 

  27. von Harsdorf, Schott, R. J., Shen, Y. T., Vatner, S. F., Mahdavi, V., & Nadal-Ginard, B. (1993). Gene injection into canine myocardium as a useful model for studying gene expression in the heart of large mammals. Circulation Research, 72(3), 688–695.

    Article  Google Scholar 

  28. Mays, L. E., & Wilson, J. M. (2011). The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Molecular Therapy, 19(1), 16–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Pfeffer, M. A., & Braunwald, E. (1990). Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 81, 1161–1172.

    Article  CAS  PubMed  Google Scholar 

  30. Blankinship, M. J., Gregorevic, P., Allen, J. M., Harper, S. Q., Harper, H., Halbert, C. L., et al. (2004). Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Molecular Therapy, 10(4), 671–678.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Z., Zhu, T., Qiao, C., Zhou, L., Wang, B., Zhang, J., et al. (2005). Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nature Biotechnology, 23(3), 321–328.

    Article  CAS  PubMed  Google Scholar 

  32. Boekstegers, P., & Kupatt, C. (2004). Current concepts and applications of coronary venous retroinfusions. Basic Research in Cardiology, 99, 373–381.

    Article  PubMed  Google Scholar 

  33. Byrne, M. J., Power, J. M., Preovolos, A., Mariani, J. A., Hajjar, R. J., & Kaye, D. M. (2008). Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Therapy, 15(23), 1550–1557.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Q., Huang, W., Zhang, H., Wang, Y., Zhao, J., Song, A., et al. (2014). Neutralizing antibodies against AAV2, AAV5 and AAV8 in healthy and HIV-1-infected subjects in China: implications for gene therapy using AAV vectors. Gene Therapy.

Download references

Acknowledgments

This work was supported by the National Heart, Lung and Blood Institute R01 grant #2R01HL083078-05. Gracious support was received from the Gene Therapy Resource Program in providing all rAAV vectors for the animal studies. In addition, we received support from the Heineman Research Foundation in Charlotte for seed funding. We also acknowledge Tracy Walling MS in the Cannon Research Center for assisting with all the histology work and Dr. Paulo Arratia at the Complex Fluids Laboratory for the device measurements.

Disclosure Statement

No competing financial interests exist.

Funding Source

National Heart, Lung and Blood Institute (2-R01-HL083078-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Bridges.

Additional information

Editor-in-chief Jennifer L. Hall oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fargnoli, A.S., Katz, M.G., Williams, R.D. et al. A Needleless Liquid Jet Injection Delivery Method for Cardiac Gene Therapy: a Comparative Evaluation Versus Standard Routes of Delivery Reveals Enhanced Therapeutic Retention and Cardiac Specific Gene Expression. J. of Cardiovasc. Trans. Res. 7, 756–767 (2014). https://doi.org/10.1007/s12265-014-9593-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9593-1

Keywords

Navigation