Skip to main content

Advertisement

Log in

Modeling Timothy Syndrome with iPS Cells

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Genetic mutations in ion channel genes that are associated with cardiac arrhythmias have been identified over the past several decades. However, little is known about the pathophysiological processes. An important limitation has been the difficulty of using human cardiomyocytes to study arrhythmias and identify drugs. To circumvent this issue, we have developed a method using human-induced pluripotent stem cells to generate cardiomyocytes from individuals with Timothy syndrome (TS), a genetic disorder characterized by QT prolongation, ventricular tachycardia, and autism. The TS ventricular-like cardiomyocytes exhibit deficits in contraction, electrical signaling, and calcium handling, as revealed by live cell imaging and electrophysiological studies. We tested candidate drugs in TS cardiomyocytes and found that roscovitine could successfully rescue these cellular phenotypes. The use of a human cellular model of cardiac arrhythmias provides a useful new platform not only to study disease mechanisms but also to develop new therapies to treat cardiac arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roden, D. M., & Viswanathan, P. C. (2005). Genetics of acquired long QT syndrome. The Journal of Clinical Investigation, 115(8), 2025–2032. PMCID: 1180553.

    Article  PubMed  CAS  Google Scholar 

  2. Splawski, I., Timothy, K. W., Sharpe, L. M., Decher, N., Kumar, P., Bloise, R., et al. (2004). Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell, 119(1), 19–31.

    Article  PubMed  CAS  Google Scholar 

  3. Thiel, W. H., Chen, B., Hund, T. J., Koval, O. M., Purohit, A., Song, L. S., et al. (2008). Proarrhythmic defects in Timothy syndrome require calmodulin kinase II. Circulation, 118(22), 2225–2234.

    Article  PubMed  CAS  Google Scholar 

  4. Cheng, E. P., Yuan, C., Navedo, M. F., Dixon, R. E., Nieves-Cintron, M., Scott, J. D., et al. (2011). Restoration of normal L-type Ca2+ channel function during Timothy syndrome by ablation of an anchoring protein. Circulation Research, 109(3), 255–261. PMCID: 3151468.

    Article  PubMed  CAS  Google Scholar 

  5. Bader, P. L., Faizi, M., Kim, L. H., Owen, S. F., Tadross, M. R., Alfa, R. W., et al. (2011). Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15432–15437. PMCID: 3174658.

    Article  PubMed  CAS  Google Scholar 

  6. Venetucci, L., Denegri, M., Napolitano, C., & Priori, S. G. (2012). Inherited calcium channelopathies in the pathophysiology of arrhythmias. Nature Reviews Cardiology, 9(10), 561–575.

    Article  PubMed  CAS  Google Scholar 

  7. Flucher, B. E., & Franzini-Armstrong, C. (1996). Formation of junctions involved in excitation–contraction coupling in skeletal and cardiac muscle. Proceedings of the National Academy of Sciences of the United States of America, 93(15), 8101–8106. PMCID: 38882.

    Article  PubMed  CAS  Google Scholar 

  8. Seisenberger, C., Specht, V., Welling, A., Platzer, J., Pfeifer, A., Kuhbandner, S., et al. (2000). Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. Journal of Biological Chemistry, 275(50), 39193–39199.

    Article  PubMed  CAS  Google Scholar 

  9. Reichenbach, H., Meister, E. M., & Theile, H. (1992). The heart–hand syndrome. A new variant of disorders of heart conduction and syndactylia including osseous changes in hands and feet. Kinderärztliche Praxis, 60(2), 54–56.

    PubMed  CAS  Google Scholar 

  10. Splawski, I., Timothy, K. W., Decher, N., Kumar, P., Sachse, F. B., Beggs, A. H., et al. (2005). Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8089–8096. discussion 6–8. PMCID: 1149428.

    Article  PubMed  CAS  Google Scholar 

  11. Gillis J, Burashnikov E, Antzelevitch C, Blaser S, Gross G, Turner L, et al. (2011) Long QT, syndactyly, joint contractures, stroke and novel CACNA1C mutation: expanding the spectrum of Timothy syndrome. Am J Med Genet A, doi:10.1002/ajmg.a.34355;PMCID:3319791

  12. Barrett, C. F., & Tsien, R. W. (2008). The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 L-type calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2157–2162. PMCID: 2538892.

    Article  PubMed  CAS  Google Scholar 

  13. Yazawa, M., Hsueh, B., Jia, X., Pasca, A. M., Bernstein, J., Hallmayer, J., & Dolmetsch, R. E. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature, 471(7337), 230–234.

    Article  PubMed  CAS  Google Scholar 

  14. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2(12), 3081–3089.

    Article  PubMed  CAS  Google Scholar 

  16. Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618–630.

    Article  PubMed  CAS  Google Scholar 

  17. Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., et al. (2011). A more efficient method to generate integration-free human iPS cells. Nature Methods, 8(5), 409–412.

    Article  PubMed  CAS  Google Scholar 

  18. Buganim, Y., Faddah, D. A., Cheng, A. W., Itskovich, E., Markoulaki, S., et al. (2012). Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell, 150(6), 1209–1222.

    Article  PubMed  CAS  Google Scholar 

  19. Yang, L., Soonpaa, M. H., Adler, E. D., Roepke, T. K., Kattman, S. J., Kennedy, M., et al. (2008). Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature, 453(7194), 524–528.

    Article  PubMed  CAS  Google Scholar 

  20. Laflamme, M. A., & Murry, C. E. (2011). Heart regeneration. Nature, 473(7347), 326–335.

    Article  PubMed  CAS  Google Scholar 

  21. Sun, N., Yazawa, M., Liu, J., Han, L., Sanchez-Freire, V., Abilez, O. J., et al. (2012). Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Science Translational Medicine, 4(130), 130ra47.

    Article  PubMed  Google Scholar 

  22. He, J. Q., Ma, Y., Lee, Y., Thomson, J. A., & Kamp, T. J. (2003). Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circulation Research, 93(1), 32–39.

    Article  PubMed  CAS  Google Scholar 

  23. Otsuji, T. G., Minami, I., Kurose, Y., Yamauchi, K., Tada, M., & Nakatsuji, N. (2010). Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: qualitative effects on electrophysiological responses to drugs. Stem Cell Research, 4(3), 201–213.

    Article  PubMed  CAS  Google Scholar 

  24. Jung, C. B., Moretti, A., Mederos Schnitzle, Y. M., Lop, L., Storch, U., Bellin, M., et al. (2012). Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Molecular Medicine, 4(3), 180–191.

    Article  PubMed  CAS  Google Scholar 

  25. Grandi, E., Pasqualini, F. S., & Bers, D. M. (2010). A novel computational model of the human ventricular action potential and Ca transient. Journal of Molecular and Cellular Cardiology, 48(1), 112–121. PMCID: 2813400.

    Article  PubMed  CAS  Google Scholar 

  26. Pasca, S. P., Portmann, T., Voineagu, I., Yazawa, M., Shcheglovitov, A., Pasca, A. M., et al. (2011). Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nature Medicine, 17(12), 1657–1662.

    Article  PubMed  CAS  Google Scholar 

  27. Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., et al. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471(7337), 225–229.

    Article  PubMed  CAS  Google Scholar 

  28. Yarotskyy, V., Gao, G., Du, L., Ganapathi, S. B., Peterson, B. Z., & Elmslie, K. S. (2010). Roscovitine binds to novel L-channel (CaV1.2) sites that separately affect activation and inactivation. Journal of Biological Chemistry, 285(1), 43–53. PMCID: 2804190.

    Article  PubMed  CAS  Google Scholar 

  29. Yarotskyy, V., Gao, G., Peterson, B. Z., & Elmslie, K. S. (2009). The Timothy syndrome mutation of cardiac CaV1.2 (L-type) channels: multiple altered gating mechanisms and pharmacological restoration of inactivation. The Journal of Physiology, 587(Pt 3), 551–565. PMCID: 2670080.

    Article  PubMed  CAS  Google Scholar 

  30. Cohen-Kutner, M., Yahalom, Y., Trus, M., & Atlas, D. (2012). Calcineurin controls voltage-dependent-inactivation (VDI) of the normal and Timothy cardiac channels. Scientific Reports, 2, 366.

    Article  PubMed  Google Scholar 

  31. Moretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flügel, L., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. The New England Journal of Medicine, 363(15), 1397–1409.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo E. Dolmetsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazawa, M., Dolmetsch, R.E. Modeling Timothy Syndrome with iPS Cells. J. of Cardiovasc. Trans. Res. 6, 1–9 (2013). https://doi.org/10.1007/s12265-012-9444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9444-x

Keyword

Navigation