Skip to main content
Log in

On the Eve of Upgrading Antidepressants: (R)-Ketamine and Its Metabolites

  • Research Highlight
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000, 47: 351–354.

    Article  CAS  PubMed  Google Scholar 

  2. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006, 63: 856–864.

    Article  CAS  PubMed  Google Scholar 

  3. Price RB, Iosifescu DV, Murrough JW, Chang LC, Al Jurdi RK, Iqbal SZ, et al. Effects of ketamine on explicit and implicit suicidal cognition: a randomized controlled trial in treatment-resistant depression. Depress Anxiety 2014, 31: 335–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krystal JH, Sanacora G, Duman RS. Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry 2013, 73: 1133–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 2016, 533: 481–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hashimoto K. R-ketamine: a rapid-onset and sustained antidepressant without risk of brain toxicity. Psychol Med 2016, 46: 2449–2451.

    Article  CAS  PubMed  Google Scholar 

  7. Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L, et al. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharmacol 2013, 698: 228–234.

    Article  CAS  PubMed  Google Scholar 

  8. Domino EF. Taming the ketamine tiger. Anesthesiology 2010, 113: 678–684.

    PubMed  Google Scholar 

  9. Kohrs R, Durieux ME. Ketamine: teaching an old drug new tricks. Anesth Analg 1998, 87: 1186–1193.

    CAS  PubMed  Google Scholar 

  10. Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB, et al. Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry 2015, 172: 950–966.

    Article  PubMed  Google Scholar 

  11. Iadarola ND, Niciu MJ, Richards EM, Vande Voort JL, Ballard ED, Lundin NB, et al. Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review. Ther Adv Chronic Dis 2015, 6: 97–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang JC, Li SX, Hashimoto K. R(−)-ketamine shows greater potency and longer lasting antidepressant effects than S(+)-ketamine. Pharmacol Biochem Behav 2014, 116: 137–141.

    Article  CAS  PubMed  Google Scholar 

  13. Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 2015, 5: e632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008, 63: 349–352.

    Article  CAS  PubMed  Google Scholar 

  15. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011, 475: 91–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Desta Z, Moaddel R, Ogburn ET, Xu C, Ramamoorthy A, Venkata SL, et al. Stereoselective and regiospecific hydroxylation of ketamine and norketamine. Xenobiotica 2012, 42: 1076–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caslavska J, Thormann W. Stereoselective determination of drugs and metabolites in body fluids, tissues and microsomal preparations by capillary electrophoresis (2000–2010). J Chromatogr A 2011, 1218: 588–601.

    Article  CAS  PubMed  Google Scholar 

  18. Zarate CA Jr, Brutsche N, Laje G, Luckenbaugh DA, Venkata SL, Ramamoorthy A, et al. Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry 2012, 72: 331–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang C, Han M, Zhang JC, Ren Q, Hashimoto K. Loss of parvalbumin-immunoreactivity in mouse brain regions after repeated intermittent administration of esketamine, but not R-ketamine. Psychiatry Res 2016, 239: 281–283.

    Article  CAS  PubMed  Google Scholar 

  20. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 2016, 22: 238–249.

    Article  CAS  PubMed  Google Scholar 

  21. Abdallah CG, Sanacora G, Duman RS, Krystal JH. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med 2015, 66: 509–523.

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Jing L, Toledo-Salas JC, Xu L. Rapid-onset antidepressant efficacy of glutamatergic system modulators: the neural plasticity hypothesis of depression. Neurosci Bull 2015, 31: 75–86.

    Article  PubMed  Google Scholar 

  23. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010, 329: 959–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS. BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol 2014, 18. doi:10.1093/ijnp/pyu033.

  25. Koike H, Chaki S. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Behav Brain Res 2014, 271: 111–115.

    Article  CAS  PubMed  Google Scholar 

  26. Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 2012, 35: 47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, K., Han, Y., Hashimoto, K. et al. On the Eve of Upgrading Antidepressants: (R)-Ketamine and Its Metabolites. Neurosci. Bull. 32, 565–568 (2016). https://doi.org/10.1007/s12264-016-0082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-016-0082-1

Keywords

Navigation