Skip to main content
Log in

Iron contributes to the formation of catechol isoquinolines and oxidative toxicity induced by overdose dopamine in dopaminergic SH-SY5Y cells

铁离子促进过量多巴胺引起 SH-SY5Y 细胞儿茶酚异喹啉物质生成和氧化损伤

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

The selective loss of dopaminergic neurons in Parkinson’s disease is suspected to correlate with the increase of cellular iron, which may be involved in the pathogenesis of PD by promotion of oxidative stress. This research investigated dopamine-induced oxidative stress toxicity contributed by iron and the production of dopamine-derived neurotoxins in dopaminergic SH-SY5Y cells.

Methods

After the SH-SY5Y cells were pre-incubated with dopamine and Fe2+ for 24 h, the cell viability, hydroxyl radical, melondialdehyde, cell apoptosis, and catechol isoquinolines were measured by lactate dehydrogenase assay, salicylic acid trapping method, thiobarbuteric acid assay, Hoechst 33258 staining and HPLC-electrochemical detection (HPLC-ECD), respectively.

Results

(1) Optimal dopamine (150 μmol/L) and Fe2+ (40 or 80 μmol/L) significantly increased the concentrations of hydroxy radicals and melondialdehyde in SH-SY5Y cells. (2) Induction with dopamine alone or dopamine and Fe2+ (dopamine/Fe2+) caused cell apoptosis. (3) Compared with untreated cells, the catechol isoquinolines, salsolinol and N-methyl-salsolinol in dopamine/Fe2+-induced cells were detected in increasing amounts.

Conclusion

Due to dopamine/Fe2+-induced oxidative stress similar to the state in the parkinsonian substantia nigra neurons, dopamine and Fe2+ impaired SH-SY5Y cells could be used as the cell oxidative stress model of Parkinson’s disease. The catechol isoquinolines detected in cells may be involved in the pathogenesis of Parkinson’s disease as potential neurotoxins.

摘要

目的

帕金森氏病(Pakinson’s disease, PD)中多巴胺能神经元选择性缺失与胞内铁水平升高有密切关系, 提示铁可能通过参与氧化应激在PD发病机制中起重要作用。本研究使用一定浓度的Fe2+和多巴胺诱导人多巴胺能成神经细胞瘤SH-SY5Y细胞产生氧化应激状态, 并且检测胞内是否有多巴胺衍生类的神经内毒素物质产生。

方法

多巴胺添加不同浓度的Fe2+诱导SH-SY5Y细胞, 24 h后用乳酸脱氢酶法、 水杨酸捕获法、 硫代巴比妥酸法、 Hoechst33258染色法和带有电化学检测器的高效液相色谱仪分别检测细胞存活率、 羟自由基生成量、 丙二醛含量、 细胞凋亡和儿茶酚异喹啉物质的生成情况。

结果

(1) 150 μmol/L 多巴胺添加40或80 μmol/L Fe2+后, 胞内羟自由基和丙二醛含量较对照组显著增加; (2) 单独多巴胺以及多巴胺加40或80 μmol/L Fe2+诱导后细胞发生凋亡; (3)在诱导后的胞内检测到Salsolinol和N-methylsalsolinol的含量高于对照组。

结论

一定浓度的Fe2+和多巴胺诱导SH-SY5Y细胞可模拟帕金森氏病人黑质区多巴胺能神经元所受到的氧化应激状态, 胞内检测到的儿茶酚异喹啉物质, 如去甲猪毛菜碱和N-methyl-salsolinol, 可能作为一类潜在的神经毒性物质与帕金森氏病的发病有关。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Theil EC. Ferritin: structure, gene regulation and cellular function in animals, plants and microorganisms. Annu Rev Biochem 1987, 56: 289–315.

    Article  PubMed  CAS  Google Scholar 

  2. Berg D, Becker G, Riederer P, Riess O. Iron in neurodegenerative disorders. Neurotox Res 2002, 4: 637–653.

    Article  PubMed  CAS  Google Scholar 

  3. Götz ME, Double K, Gerlach M, Youdim MB, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 2004, 1012: 193–208.

    Article  PubMed  CAS  Google Scholar 

  4. Walter U, Wittstock M, Benecke R, Dressler D. Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinson’s disease. J Neural Transm 2002, 109: 191–196.

    Article  PubMed  CAS  Google Scholar 

  5. Berg D, Gerlach M, Youdim MB, Double KL, Zecca L, Riederer P, et al. Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 2001, 79: 225–236.

    Article  PubMed  CAS  Google Scholar 

  6. Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 1992, 32: 804–812.

    Article  PubMed  CAS  Google Scholar 

  7. Jenner P. Oxidative mechanism in nigral cell death in Parkinson’s disease. Mov Disord 1998, 13Suppl 1: 24–34.

    PubMed  Google Scholar 

  8. Gerlach M, Ben-Shachar D, Riederer P, Youdim MB. Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 1994, 63: 793–807.

    Article  PubMed  CAS  Google Scholar 

  9. Teitel S, O’Brien J, Brossi A. Alkaloids in mammalian tissue: 2. Synthesis of (+)-and (−)-/-substituted-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines. J Med Chem 1972, 15: 845–846.

    Article  PubMed  CAS  Google Scholar 

  10. Jen JF, Leu MF, Yang TC. Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography. J Chromatogr A 1998, 796: 283–288.

    Article  CAS  Google Scholar 

  11. Qing H, Xu H, Wei Z, Gibson K, Li X. The ability of atypical antipsychotic drugs vs. haloperidol to protect PC12 cells against MPP+-induced apoptosis. Eur J Neurosci 2003, 17: 1563–1570.

    Article  PubMed  Google Scholar 

  12. Naoi M, Maruyama W, Akao Y, Yi H. Dopamine-derived endogenous N-methyl-(R)-salsolinol: its role in Parkinson’s disease. Neurotoxicol Teratol 2002, 24: 579–591.

    Article  PubMed  CAS  Google Scholar 

  13. Kidd PM. Parkinson’s disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern Med Rev 2000, 5: 502–529.

    PubMed  CAS  Google Scholar 

  14. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 1994, 36: 348–355.

    Article  PubMed  CAS  Google Scholar 

  15. Sofic E, Lange K W, Jellinger K, Riederer P. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 1992, 142: 128–130.

    Article  PubMed  CAS  Google Scholar 

  16. Kaur D, Andersen J. Does cellular iron dysregulation play a causative role in Parkinson’s disease? Aging Res Rev 2004, 3: 327–343.

    Article  CAS  Google Scholar 

  17. Pezzella A, d’Ischia M, Napolitano A, Misuraca G, Prota G. Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine: a possible contributory mechanism for neuronal degeneration in Parkinson’s disease. J Med Chem 1997, 40: 2211–2216.

    Article  PubMed  CAS  Google Scholar 

  18. Jellinger K, Paulus W, Grundke-Iqbal I, Riederer P, Youdim MB. Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Trans Park Dis Dement Sect 1990, 2: 327–340.

    Article  CAS  Google Scholar 

  19. Hemdan S, Almazan G. Iron contributes to dopamine-induced toxicity in oligodendrocyte progenitors. Neuropathol Appl Neurobiol 2006, 32: 428–440.

    Article  PubMed  CAS  Google Scholar 

  20. Sandler M, Carter SB, Hunter KR, Stern GM. Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature 1973, 241: 439–443.

    Article  PubMed  CAS  Google Scholar 

  21. Naoi M, Maruyama W, Nagy GM. Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains. Neurotoxicology 2004, 25: 193–204.

    Article  PubMed  CAS  Google Scholar 

  22. Maruyama W, Nakahara D, Dostert P, Takahashi T, Naoi M. Naturally-occurring isoquinolines perturb monoamine metabolism in the brain: studies by in vivo microdialysis. J Neural Transs 1993, 94: 91–102.

    Article  CAS  Google Scholar 

  23. Matsubara K, Ota M, Takahashi T, Maruyama W, Naoi M. Structural studies of condensation products of biogenic amines as inhibitors of tryptophan hydroxylase. Brain Res 1994, 655: 121–127.

    Article  PubMed  CAS  Google Scholar 

  24. Naoi M, Maruyama W, Dostert P, Hashizume Y, Nakahara D, Takahashi T, et al. Dopamine-derived endogenous 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetra-hydroisoqunoline, Nmethyl-(R)-salsolinol, induced parkinsonism in rat: biochemical, pathological and behavioral studies. Brain Res 1996, 709: 285–295.

    Article  PubMed  CAS  Google Scholar 

  25. Maruyama W, Abe T, Tohgi H, Dostert P, Naoi M. A dopaminergic neurotoxin, (R)-N-methylsalsolinol, increases in parkinsonian cerebrospinal fluid. Ann Neurol 1996, 40:119–122.

    Article  PubMed  CAS  Google Scholar 

  26. Naoi M, Maruyama W, Akao Y, Yi H. Mitochondria determine the survival and death in apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, and neuro-protection by propargylamines. J Neural Transm 2002, 109: 607–621.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Lin Deng.

Additional information

The authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Qing, H., Liu, XQ. et al. Iron contributes to the formation of catechol isoquinolines and oxidative toxicity induced by overdose dopamine in dopaminergic SH-SY5Y cells. Neurosci. Bull. 24, 125–132 (2008). https://doi.org/10.1007/s12264-008-1214-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-008-1214-z

Keywords

CLC number

关键词

Navigation