Skip to main content
Log in

Indole oxidation enhances electricity production in an E. coli-catalyzed microbial fuel cell

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Microbial fuel cells (MFCs) generate electricity from the oxidation of dissolved organic matter. A variety of Gram-positive and Gram-negative bacteria, including Escherichia coli, produce a large quantity of indole, which functions as an extracellular signal molecule. This work explored the role of indole in a mediatorless E. coli catalyzed MFC. Although the presence of indole alone did not affect power generation, indole oxidation by the indole-oxidizing enzyme toluene-o-monooxygenase (TOM) enhanced power density by 9-fold. Open circuit voltage and polarization curve showed that indole oxidation by TOM produced a maximum power density of 5.4 mW/m2 at 1,000 ohm. Cyclic voltammetric results suggested that indole oxidation resulted in the production of redox compounds. This study provides a novel means of enhancing power generation in E. coli-catalyzed MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Logan, B. E. (2007) Microbial fuel cells. John Wiley & Sons, Inc., Hoboken.

    Book  Google Scholar 

  2. Lovley, D. R. (2006) Bug juice: Harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4: 497–508.

    Article  CAS  Google Scholar 

  3. Bond, D. R. and D. R. Lovley (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548–1555.

    Article  CAS  Google Scholar 

  4. Chaudhuri, S. K. and D. R. Lovley (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229–1232.

    Article  CAS  Google Scholar 

  5. Newman, D. K. and R. Kolter (2000) A role for excreted quinones in extracellular electron transfer. Nature 405: 94–97.

    Article  CAS  Google Scholar 

  6. Rabaey, K., N. Boon, M. Hofte, and W. Verstraete (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39: 3401–3408.

    Article  CAS  Google Scholar 

  7. Park, D. H. and J. G. Zeikus (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292–1297.

    Article  CAS  Google Scholar 

  8. Schröider, U., J. Neiâen, and F. Scholz (2003) A generation of microbial fuel cells with curretnt outputs booted by more than one order of magnitude. Angew. Chem. Int. Ed. Engl. 42: 2880–2883.

    Article  Google Scholar 

  9. Wang, Y. F., S. Tsujimura, S. S. Cheng, and K. Kano (2007) Selfexcreted mediator from Escherichia coli K-12 for electron transfer to carbon electrodes. Appl. Microbiol. Biotechnol. 76: 1439–1446.

    Article  CAS  Google Scholar 

  10. Zhang, T., C. Cui, S. Chen, H. Yang, and P. Shen (2008) The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem. Commun. 10: 293–297.

    Article  CAS  Google Scholar 

  11. Qiao, Y., C. M. Li, S. J. Bao, Z. Lu, and Y. Hong (2008) Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem. Commun. (Camb). 21: 1290–1292.

    Article  Google Scholar 

  12. Lee, J. -H. and J. Lee (2010) Indole as an intercellular signal in microbial community. FEMS Microbiol. Rev. 34: 426–444.

    CAS  Google Scholar 

  13. Luo, Y., R. Zhang, G. Liu, J. Li, M. Li, and C. Zhang (2009) Electricity generation from indole and microbial community analysis in the microbial fuel cell. J. Hazard. Mater. 176: 759–764.

    Article  Google Scholar 

  14. Rui, L., K. F. Reardon, and T. K. Wood (2005) Protein engineering of toluene ortho-monooxygenase of Burkholderiacepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl. Microbiol. Biotechnol. 66: 422–429.

    Article  CAS  Google Scholar 

  15. Gorby, Y. A., S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K. H. Nealson, and J. K. Fredrickson (2006) Electrically conductive bacterial nanowires produced by Shewanellaoneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA. 103: 11358–11363.

    Article  CAS  Google Scholar 

  16. Blattner, F. R., G. Plunkett, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao (1997) The complete genome sequence of Escherichia coli K-12. Sci. 277: 1453–1474.

    Article  CAS  Google Scholar 

  17. Han, T. H., J. H. Lee, M. H. Cho, T. K. Wood, and J. Lee (2011) Environmental factors affecting indole production in Escherichia coli. Res. Microbiol. 162: 108–116.

    Article  CAS  Google Scholar 

  18. Lee, J., A. Jayaraman, and T. K. Wood (2007) Indole is an interspecies biofilm signal mediated by SdiA. BMC Microbiol. 7: 42.

    Article  Google Scholar 

  19. Min, B., S. Cheng, and B. E. Logan (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 39: 1675–1686.

    Article  CAS  Google Scholar 

  20. Watson, V. J. and B. E. Logan (2010) Power production in MFCs inoculated with Shewanellaoneidensis MR-1 or mixed cultures. Biotechnol. Bioeng. 105: 489–498.

    Article  CAS  Google Scholar 

  21. Cheng, S. and B. E. Logan (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun. 9: 492–496.

    Article  Google Scholar 

  22. Franks, A. E., N. Malvankar, and K. P. Nevin (2010) Bacterial biofilms: The powerhouse of a microbial fuel cell. Biofuels. 1: 589–604.

    Article  CAS  Google Scholar 

  23. Ren, Z., R. P. Ramasamy, S. R. Cloud-Owen, H. Yan, M. M. Mench, and J. M. Regan (2011) Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells. Bioresour. Technol. 102: 416–421.

    Article  CAS  Google Scholar 

  24. Zhang, T., C. Cui, S. Chen, X. Ai, H. Yang, P. Shen, and Z. Peng (2006) A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem. Commun. (Camb). 11: 2257–2259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintae Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, T.H., Cho, M.H. & Lee, J. Indole oxidation enhances electricity production in an E. coli-catalyzed microbial fuel cell. Biotechnol Bioproc E 19, 126–131 (2014). https://doi.org/10.1007/s12257-013-0429-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0429-7

Keywords

Navigation