Skip to main content
Log in

Enhancement of polysialic acid yield by reducing initial phosphate and feeding ammonia water to Escherichia coli CCTCC M208088

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Polysialic acid (PSA) is a capsular polysaccharide obtained from aerobic fermentation with Escherichia coli. To enhance PSA production and eliminate the influence of phosphate on the PSA purification process, a lower level of initial phosphate was adopted with pH control. The resulting PSA yield reached 4.1 g/L in fed-batch fermentation with 2.5 g/L K2HPO4 and E. coli strain CCTCC M208088. In addition, an ammonia water (NH4OH) feeding strategy to control the pH at 6.4 was developed resulting in PSA production that reached as high as 5.2 g/L. NMR spectra confirmed the purified biopolymer as a α-2,8 linked PSA, identical to the published NMR spectra, with a molecular weight in the range of 16 ∼ 50 kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhattacharjee, A. K., H. J. Jennings, C. P. Kenny, A. Martin, and I. C. Smith (1975) Structural determination of the sialic acid polysaccharide antigens of Neisseria meningitidis serogroups B and C with carbon 13 nuclear magnetic resonance. J. Biol. Chem. 250: 1926–1932.

    CAS  Google Scholar 

  2. Troy, F. A. (1996) Sialobiology and the polysialic acid glycotope. pp 95–144. In: Rosenberg, A. (ed). Biology of the Sialic Acids. Plenum Press, NY, USA.

    Google Scholar 

  3. Barry, G. T. and W. F. Goebel (1957) Colominic acid, a substance of bacterial origin related to sialic acid. Nature 179: 206.

    Article  CAS  Google Scholar 

  4. Bergfeld, A. K., H. Claus, U. Vogel, and M. Muhlenhoff (2007) Biochemical characterization of the polysialic acid-specific Oacetyltransferase NeuO of Escherichia coli K1. J. Biol. Chem. 282: 22217–22227.

    Article  CAS  Google Scholar 

  5. Andreishcheva, E. N. and W. F. Vann (2006) Gene products required for de novo synthesis of polysialic acid. J. Bacteriol. 188: 1786–1797.

    Article  CAS  Google Scholar 

  6. Wunder, D. E., W. Aaronson, S. F. Hayes, J. Bliss, and R. P. Silver (1994) Nucleotide sequence and mutational analysis of the gene encoding KpsD, a periplasmic protein involved in transport of polysialic acid in Escherichia coli K1. J. Bacteriol. 176: 4025–4033.

    CAS  Google Scholar 

  7. Gregoriadis, G., S. Jain, I. Papaioannous, and P. Liang (2005) Improving the therapeutic efficacy of peptides and proteins: A role for polysialic acids. Int. J. Pharm. 300: 125–130.

    Article  CAS  Google Scholar 

  8. Haile, Y., K. Haastert, K. Cesnulevicius, K. Stummeyer, M. Timmer, S. Berski, G. Drager, R. Gerardy-Schahn, and C. Grothe (2007) Culturing of glial and neuronal cells on polysialic acid. Biomaterials 28: 1163–1173.

    Article  CAS  Google Scholar 

  9. Rosenburg, G. A. and C. L. Schengrund (1976) Biological roles of sialic acid. pp 59–86. Plenum Press, NY, USA.

    Google Scholar 

  10. Witczak, Z. J. and K. A. Nieforth (1997) Carbohydrate in drugs design. pp 82–134. Marcel Dekker, NY, USA.

    Google Scholar 

  11. McNicholl, I. R. and J. J. McNicholl (2001) Neuraminidase inhibitors: Zanamivir and oseltamivir. Ann. Pharmacother. 35: 57–70.

    Article  CAS  Google Scholar 

  12. Nacalai USA Inc. http://www.nacalaiusa.com/product.php?id=33.

  13. Uchida, Y. and Y. Tsukada (1973) Improved microbial production of colominic acid, a homopolymer of N-acetylneuraminic acid. Agric. Biol. Chem. 37: 2105–2110.

    CAS  Google Scholar 

  14. Rodriguez-Aparicio, L. B., A. Reglero, A. I. Ortiz, and J. M. Luenge (1988) Effect of physical and chemical conditions on the production of colominic acid by Escherichia coli in a defined medium. Appl. Microbiol. Biotechnol. 27: 474–483.

    CAS  Google Scholar 

  15. Camino, G. C., J. M. Luengo, and L. B. Rodríguez-Aparicio (1990) High production of polysialic acid [Neu5Ac alpha (2–8)-Neu5Ac alpha(2–9)]n by Escherichia coli K92 grown in a chemically defined medium: Regulation of temperature. Biol. Chem. Hoppe. Seyler. 371: 1101–1106.

    Google Scholar 

  16. Zhan, X. B., L. Zhu, J. R. Wu, Z. Y. Zheng, and W. Jia (2002) Production of polysialic acid from fed-batch fermentation with pH control. Biochem. Eng. J. 11: 201–204.

    Article  CAS  Google Scholar 

  17. Rode, B., C. Endres, C. Ran, F. Stahl, S. Beutel, C. Kasper, S. Galuska, R. Geyer, M. Muhlenhoff, R. Gerardy-Schahn, and T. Scheper (2008) Large-scale production and homogenous purification of long chain polysialic acids from E. coli K1. J. Biotechnol. 135: 202–209.

    Article  CAS  Google Scholar 

  18. Kapre, S. V. and U. Shaligram (2008) Process for the preparation of highly pure polysialic acid of high molecular weights. PCT Patent 2008/035373.

  19. Honda, H., T. Nakazeko, K. Ogiso, Y. Kawase, N. Aoki, M. Kawase, and T. Kobayashi (1997) Colominic acid production from Escherichia coli in a fed-batch culture under the control of ammonium ions using an FIA System. J. Ferment. Bioeng. 83: 59–63.

    Article  CAS  Google Scholar 

  20. Svennerholm, L. (1957) Quantitative estimation of sialic acids. Biochim. Biophys. Acta. 24: 604–611.

    Article  CAS  Google Scholar 

  21. Pesez, M. and J. Bartos (1974) Colorimetric and fluorometric analysis of organic compounds and drugs. pp 291–328. Marcel Dekker, NY, USA.

    Google Scholar 

  22. Harwood, J. E. and D. J. Huysen (1970) Automated analysis of ammonia in water. Water Res. 4: 695–704.

    Article  Google Scholar 

  23. Yu, D. F., X. B. Zhan, J. L. Liu, and J. R. Wu (2008) Application of cetyl pyridinium chloride for purification of polysialic acid. Chin. J. Bioproc. Eng. 24: 46–51.

    CAS  Google Scholar 

  24. Bhattacharjee, A. K., H. J. Jennings, C. P. Kenny, A. Martin, and I. C. Smith (1975) Structural determination of the sialic acid polysaccharide antigens of Neisseria meningitidis serogroups B and C with carbon 13 nuclear magnetic resonance. J. Biol. Chem. 250: 1926–1932.

    CAS  Google Scholar 

  25. Egan, W., T. Y. Liu, D. Dorow, J. S. Cohen, J. D. Robbins, E. C. Gotschlich, and J. B. Robbins (1977) Structural studies on the sialic acid polysaccharide antigen of E. coli strain Bos-12. Biochemistry 16: 3687–3692.

    Article  CAS  Google Scholar 

  26. Egan, W. and T. Y. Liu (1977) Structural studies on the sialic acid polysaccharide antigen of E. coli strain Bos-12. Biochemistry 16: 3687–3692.

    Article  CAS  Google Scholar 

  27. Ly, A., J. Henderson, A. Lu, D. E. Culham, and J.M. Wood (2004) Osmoregulatory systems of Escherichia coli: Identification of betaine-carnitine-choline transporter family member BetU and distributions of betU and trkG among pathogenic and nonpathogenic isolates. J. Bacteriol. 186: 296–306.

    Article  CAS  Google Scholar 

  28. Jain, S., P. Laing, and G. Gregoriadis (2008) Reduction of endotoxin in polysialic acids. PCT Patent 2008/104811.

  29. Gregoriadis, G., B. McCormack, and R. Lifely (1993) Polysialic acid: Potential in drug delivery. FEBS Lett. 315: 271–276.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Rong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JR., Liu, JL., Zhan, XB. et al. Enhancement of polysialic acid yield by reducing initial phosphate and feeding ammonia water to Escherichia coli CCTCC M208088. Biotechnol Bioproc E 15, 657–663 (2010). https://doi.org/10.1007/s12257-009-3128-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3128-7

Keywords

Navigation