Skip to main content
Log in

Enhanced cutinase production of Thermobifida fusca by a two-stage batch and fed-batch cultivation strategy

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, cutinase production by Thermobifida fusca WSH03-11 was investigated with mixed short-chain organic acids as co-carbon sources to demonstrate the possibility of producing high value-added products from organic wastes. T. fusca WSH03-11 was cultured with different combinations of butyrate, acetate, and lactate with a purpose of increasing cutinase activity. The optimum proportion of butyrate, acetate, and lactate was 4:1:3. In batch cultivation, acetate and lactate were consumed quickly, while the consumption of butyrate was depressed in the presence of acetate with a concentration higher than 0.5 g/L. Based on these results, a two-stage batch and fed-batch cultivation strategy was proposed: a batch culture with acetate and lactate as the co-carbon sources in the first 10 h, and then a fed-batch culture with a constant butyrate feeding rate of 12 mL/h during 11∼20 h. By this two-stage cultivation strategy, cutinase activity, dry cell weight, and consumption rate of butyrate were increased by 70%, 103.4%, and 4.3-fold, respectively, compared to those of the batch cultivation. These results provided a novel and efficient way to produce high value-added products from organic wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Purdy, R. E. and P. E. Kolattukudy (1975) Hydrolysis of plant cuticle by plant pathogens. Purification, amino acid composition, and molecular weight of two isozymes of cutinase and a nonspecific esterase from Fusarium solani f. pisi. Biochemistry 14: 2824–2831.

    Article  CAS  Google Scholar 

  2. Egmond, M. R. and J. de Vlieg (2000) Fusarium solani pisi cutinase. Biochimie 82: 1015–1021.

    Article  CAS  Google Scholar 

  3. Egmond, M. R. and C. J. van Bemmel (1997) Impact of structural information on understanding lipolytic function. Methods Enzymol. 284: 119–129.

    Article  CAS  Google Scholar 

  4. Carvalho, C. M. L., M. R. Aires-Barros, and J. M. S. Cabral (1998) Cutinase structure, function and biocatalytic applications. Electron. J. Biotechnol. 1: 160–173.

    Article  Google Scholar 

  5. Degani, O., S. Gepstein, and C. G. Dosoretz (2002) Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Appl. Biochem. Biotechnol. 102–103: 277–289.

    Article  Google Scholar 

  6. Du, G. C., S. L. Zhang, Z. Z. Hua, Y. Zhu, and J. Chen (2007) Enhanced cutinase production with Thermobifida fusca by two-stage pH control strategy. Biotechnol. J. 2: 365–369.

    Article  CAS  Google Scholar 

  7. Calado, C. R. C., B. S. Ferreira, M. M. R. da Fonseca, J. M. S. Cabral, and L. P. Fonseca (2004) Integration of the production and the purification processes of cutinase secreted by a recombinant Saccharomyces cerevisiae SU50 strain. J. Biotechnol. 109: 147–158.

    Article  CAS  Google Scholar 

  8. Pio, T. F. and G. A. Macedo (2007) Optimizing the production of cutinase by Fusarium oxysporium using response surface methodology. Enzyme Microb. Technol. 41: 613–619.

    Article  CAS  Google Scholar 

  9. Iranpour, R., M. Stenstrom, G. Tchobanoglous, D. Miller, J. Wright, and M. Vossoughi (1999) Environmental engineering: energy value of replacing waste disposal with resource recovery. Science 285: 706–711.

    Article  CAS  Google Scholar 

  10. Du, G. and J. Yu (2002) Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates. Environ. Sci. Technol. 36: 5511–5516.

    Article  CAS  Google Scholar 

  11. Kapdan, I. K. and F. Kargi (2006) Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38: 569–582.

    Article  CAS  Google Scholar 

  12. Lata, K., K. V. Rajeshwari, D. C. Pant, and V. V. N. Kishore (2002) Volatile fatty acid production during anaerobic mesophilic digestion of tea and vegetable market wastes. World J. Microbiol. Biotechol. 18: 589–592.

    Article  CAS  Google Scholar 

  13. Parawira, W., M. Murto, J. S. Read, and B. Mattiasson (2004) Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste. J. Chem. Technol. Biotechnol. 79: 673–677.

    Article  CAS  Google Scholar 

  14. Calado, C. R. C., S. M. S. Monteiro, J. M. S. Cabral, and L. P. Fonseca (2002) Effect of pre-fermentation on the production of cutinase by a recombinant Saccharomyces cerevisiae. J. Biosci. Bioeng. 93: 354–359.

    CAS  Google Scholar 

  15. Fett, W. F., C. Wijey, R. A. Moreau, and S. F. Osman (2000) Production of cutinolytic esterase by filamentous bacteria. Lett. Appl. Microbiol. 31: 25–29.

    Article  CAS  Google Scholar 

  16. Park, W., S. H. Hyun, S. E. Oh, B. E. Logan, and I. S. Kim (2005) Removal of headspace CO2 increases biological hydrogen production. Environ. Sci. Technol. 39: 4416–4420.

    Article  CAS  Google Scholar 

  17. Yu, J. and J. Wang (2001) Metabolic flux modeling of detoxification of acetic acid by Ralstonia eutropha at slightly alkaline pH levels. Biotechnol. Bioeng. 73: 458–464.

    Article  CAS  Google Scholar 

  18. Yu, J., Y. Si, and W. K. R. Wong (2002) Kinetics modeling of inhibition and utilization of mixed volatile fatty acids in the formation of polyhydroxyalkanoates by Ralstonia eutropha. Process Biochem. 37: 731–738.

    Article  CAS  Google Scholar 

  19. Tsuge, T., K. Tanaka, M. Shimoda, and A. Ishizaki (1999) Optimization of L-lactic acid feeding for the production of poly-D-3-hydroxybutyric acid by Alcaligenes eutrophus in fed-batch culture. J. Biosci. Bioeng. 88: 404–409.

    Article  CAS  Google Scholar 

  20. Sebastian, J. and P. E. Kolattukudy (1988) Purification and characterization of cutinase from a fluorescent Pseudomonas putida bacterial strain isolated from phyllosphere. Arch. Biochem. Biophys. 263: 77–85.

    Article  CAS  Google Scholar 

  21. Fett, W. F., H. C. Gérard, R. A. Moreau, S. F. Osman, and L. E. Jones (1992) Cutinase production by Streptomyces spp. Curr. Microbiol. 25: 165–171.

    Article  CAS  Google Scholar 

  22. Ferreira, B. S., C. R. C. Calado, F. van Keulen, L. P. Fonseca, J. M. S. Cabral, and M. M. R. da Fonseca (2003) Towards a cost effective strategy for cutinase production by a recombinant Saccharomyces cerevisiae: strain physiological aspects. Appl. Microbiol. Biotechnol. 61: 69–76.

    CAS  Google Scholar 

  23. Wang, G. Y., T. J. Michailides, B. D. Hammock, Y. M. Lee, and R. M. Bostock (2000) Affinity purification and characterization of a cutinase from the fungal plant pathogen Monilinia fructicola (Wint.) honey. Arch. Biochem. Biophys. 382: 31–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guocheng Du or Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, G., Huo, G., Liu, L. et al. Enhanced cutinase production of Thermobifida fusca by a two-stage batch and fed-batch cultivation strategy. Biotechnol Bioproc E 14, 46–51 (2009). https://doi.org/10.1007/s12257-008-0091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0091-7

Keywords

Navigation