Skip to main content

Advertisement

Log in

Experimental Saltwater Intrusion Drives Rapid Soil Elevation and Carbon Loss in Freshwater and Brackish Everglades Marshes

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Increasing rates of sea-level rise (SLR) threaten to submerge coastal wetlands unless they increase soil elevation at similar pace, often by storing soil organic carbon (OC). Coastal wetlands face increasing salinity, marine-derived nutrients, and inundation depths from increasing rates of SLR. To quantify the effects of SLR on soil OC stocks and fluxes and elevation change, we conducted two mesocosm experiments using the foundation species sawgrass (Cladium jamaicense) and organic soils from freshwater and brackish Florida Everglades marshes for 1 year. In freshwater mesocosms, we compared ambient and elevated salinity (fresh, 9 ppt) and phosphorus (ambient, + 1 g P m−2 year−1) treatments with a 2 × 2 factorial design. Salinity addition reduced root biomass (48%), driving 2.8 ± 0.3 cm year−1 of elevation loss, while soil elevation was maintained in freshwater conditions. Added P increased root productivity (134%) but also increased breakdown rates (k) of roots (31%) and leaves (42%) with no effect on root biomass or soil elevation. In brackish mesocosms, we compared ambient and elevated salinity (10, 19 ppt) and inundated and exposed conditions (water level 5-cm below and 4-cm above soil). Elevated salinity decreased root productivity (70%) and root biomass (37%) and increased k in litter (33%) and surface roots (11%), whereas inundation decreased subsurface root k (10%). All brackish marshes lost elevation at similar rates (0.6 ± 0.2 cm year−1). In conclusion, saltwater intrusion in freshwater and brackish wetlands may reduce net OC storage and increase vulnerability to SLR despite inundation or marine P supplies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ardón, M., A.M. Helton, and E.S. Bernhardt. 2016. Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands. Biogeochemistry 127 (2–3): 411–426.

    Article  CAS  Google Scholar 

  • Baustian, J.J., I.A. Mendelssohn, and M.W. Hester. 2012. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology 18 (11): 3377–3382.

    Article  Google Scholar 

  • Benfield, E.F. 2006. Decomposition of leaf material. In Methos in stream ecology, ed. F.R. Hauer and G.A. Lamberti, 711–720. San Diego, CA: Academic Press.

    Google Scholar 

  • Bouillon, S., A.V. Borges, E. Castañeda-Moya, K. Diele, T. Dittmar, N.C. Duke, E. Kristensen, S.Y. Lee, C. March, J.J. Middelburg, V.H. Rivera-Monroy, R.R. Twilley, and T.J. Smith. 2008. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles 22: GB2013.

    Article  CAS  Google Scholar 

  • Brighthaupt, J.L., J.M. Smoak, V.H. Rivera-Monroy, E. Castañeda-Moya, R.P. Moyer, M. Simard, and C.J. Sanders. 2017. Partitioning the relative contributions of organic matter and mineral sediment to accretion rates in carbonate platform mangrove soils. Marine Geology 390: 170–180.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., P. Hensel, J. Rybczyk, K.L. McKee, C.E. Proffitt, and B.C. Perez. 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91 (6): 1093–1105.

    Article  Google Scholar 

  • Castañeda-Moya, E., R.R. Twilley, V.H. Rivera-Monroy, B.D. Marx, C. Coronado-Molina, and S.M.L. Ewe. 2011. Patterns of root dynamics in mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14 (7): 1178–1195.

    Article  CAS  Google Scholar 

  • Chambers, L.G., S.E. Davis, T.T. Troxler, J.N. Boyer, A. Downey-Wall, and L.J. Scinto. 2013. Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil. Hydrobiologia. https://doi.org/10.1007/s10750-10013-11764-10756.

  • Chambers, L.G., S.E. Davis, and T.G. Troxler. 2015. Sea level rise in the Everglades: Plant-soil-microbial feedbacks in response to changing physical conditions. In Microbiology of the Everglades ecosystem, ed. J.A. Entry, 89–112. Boca Raton: CRC.

    Chapter  Google Scholar 

  • Chambers, L.G., H.E. Steinmuler, and J. Breithaupt. 2019. Toward a mechanistic understanding of “peat collapse” and its potential contribution to coastal wetland loss. Ecology. https://doi.org/10.1002/ecy.2720.

  • Childers, D.L., D. Iwaniec, D. Rondeau, G. Rubio, E. Verdon, and C.J. Madden. 2006. Responses of sawgrass and spikerush to variation in hydrologic drivers and salinity in Southern Everglades marshes. Hydrobiologia 569 (1): 273–292.

    Article  Google Scholar 

  • Chmura, G.L., S.C. Anisfeld, D.R. Cahoon, and J.C. Lynch. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 12.

    Article  CAS  Google Scholar 

  • Cornwell, W.K., J.H.C. Cornelissen, K. Amatangelo, E. Dorrepaal, V.T. Eviner, O. Godoy, S.E. Hobbie, B. Hoorens, H. Kurokawa, N. Perez-Harguindeguy, H.M. Quested, L.S. Santiago, D.A. Wardle, I.J. Wright, R. Aerts, S.D. Allison, P. van Bodegom, V. Brovkin, A. Chatain, T.V. Callaghan, S. Diaz, E. Garnier, D.E. Gurvich, E. Kazakou, J.A. Klein, J. Read, P.B. Reich, N.A. Soudzilovskaia, M.V. Vaieretti, and M. Westoby. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11 (10): 1065–1071.

    Article  Google Scholar 

  • Craft, C.B., and C.J. Richardson. 1993. Peat accretion and N, P, and organic C accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecological Applications 3 (3): 446–458.

    Article  CAS  Google Scholar 

  • Craft, C.B., J. Vymazal, and C.J. Richardson. 1995. Response of Everglades plant communities to nitrogen and phosphorus additions. Wetlands 15 (3): 258–271.

    Article  Google Scholar 

  • Dahl, T.E. 2011. Status and trends of wetlands in the conterminous United States 2004–2009. Washington DC: U.S. Department of the Interior, Fish and Wildlife Service.

    Google Scholar 

  • Daoust, R.J., and D.L. Childers. 2004. Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem. Oecologia 141 (4): 672–686.

    Article  Google Scholar 

  • Davidson, E.A., R.L. Nifong, R.B. Ferguson, C. Palm, D.L. Osmond, and J.S. Baron. 2016. Nutrients in the nexus. Journal of Environmental Studies and Sciences 6 (1): 25–38.

    Article  Google Scholar 

  • Davis, S.M., and J.C. Ogden. 1994. Everglades: The ecosystem and its restoration. Boca Raton, FL: St. Lucie Press.

    Book  Google Scholar 

  • Deegan, L.A., D.S. Johnson, R.S. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490 (7420): 388–395.

    Article  CAS  Google Scholar 

  • Delaune, R.D., J.A. Nyman, and W.H. Patrick. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research 10: 1021–1030.

    Google Scholar 

  • Dessu, S.B., R.M. Price, T.G. Troller, and J.S. Kominoski. 2018. Effects of sea-level rise and freshwater management on local water levels and water quality in the Florida Coastal Everglades. Journal of Environmental Management 211: 164–176.

    Article  Google Scholar 

  • Ewe, S.M.L., E.E. Gaiser, D.L. Childers, D. Iwaniec, V.H. Rivera-Monroy, and R.R. Twilley. 2006. Spatial and temporal patterns of aboveground net primary productivity along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569 (1): 459–474.

    Article  Google Scholar 

  • Flower, H., M. Rains, and C. Fitz. 2017a. Visioning the future: Scenarios modeling of the Florida Coastal Everglades. Environmental Management 60 (5): 989–1009.

    Article  Google Scholar 

  • Flower, H., M. Rains, D. Lewis, J.Z. Zhang, and R. Price. 2017b. Saltwater intrusion as potential driver of phosphorus release from limestone bedrock in a coastal aquifer. Estuarine Coastal and Shelf Science 184: 166–176.

    Article  CAS  Google Scholar 

  • Gaiser, E.E., J.C. Trexler, J.H. Richards, D.L. Childers, D. Lee, A.L. Edwards, L.J. Scinto, K. Jayachandran, G.B. Noe, and R.D. Jones. 2005. Cascading ecological effects of low-level phosphorus enrichment in the Florida everglades. Journal of Environmental Quality 34 (2): 717–723.

    Article  CAS  Google Scholar 

  • Griscom, B.W., J. Adams, P.W. Ellis, R.A. Houghton, G. Lomax, D.A. Miteva, W.H. Schlesinger, D. Shoch, J.V. Siikamaki, P. Smith, P. Woodbury, C. Zganjar, A. Blackman, J. Campari, R.T. Conant, C. Delgado, P. Elias, T. Gopalakrishna, M.R. Hamsik, M. Herrero, J. Kiesecker, E. Landis, L. Laestadius, S.M. Leavitt, S. Minnemeyer, S. Polasky, P. Potapov, F.E. Putz, J. Sanderman, M. Silvius, E. Wollenberg, and J. Fargione. 2017. Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America 114 (44): 11645–11650.

    Article  CAS  Google Scholar 

  • Herbert, E.R., P. Boon, A.J. Burgin, S.C. Neubauer, R.B. Franklin, M. Ardón, K.N. Hopfensperger, L.P.M. Lamers, and P. Gell. 2015. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6: 43.

    Article  Google Scholar 

  • Hohner, S.M., and T.W. Dreschel. 2015. Historical and recent condition of Everglades peats. Mires and Peat 16: 1–15.

    Google Scholar 

  • Huston, M.A. 1997. Landscape patterns: Gradients and zonation. Gainesville, FL: University Press of Florida.

    Google Scholar 

  • Ise, T., A.L. Dunn, S.C. Wofsy, and P.R. Moorcroft. 2008. High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geoscience 1 (11): 763–766.

    Article  CAS  Google Scholar 

  • Karam, A. 1993. Chemical properties of organic soils. In Soil sampling and methods of analysis, ed. M.R. Carter and for Canadian Society of Soil Science, 459–471. London: Lewis.

    Google Scholar 

  • Kauffman, J.B., V.B. Arifanti, H.H. Trejo, M.C.J. Garcia, J. Norfolk, M. Cifuentes, D. Hadriyanto, and D. Murdiyarso. 2017. The jumbo carbon footprint of a shrimp: Carbon losses from mangrove deforestation. Frontiers in Ecology and the Environment 15 (4): 183–188.

    Article  Google Scholar 

  • Kirwan, M.L., J. A. Langley, G. R. Guntenspergen, and J. P. Megonigal. 2013. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes. Biogeosciences 10 (3):1869-1876.

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504 (7478): 53–60.

    Article  CAS  Google Scholar 

  • Kirwan, M.L., S. Temmerman, E.E. Skeehan, G.R. Guntenspergen, and S. Fagherazzi. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6 (3): 253–260.

    Article  Google Scholar 

  • Krauss, K.W., J.A. Duberstein, T.W. Doyle, W.H. Conner, R.H. Day, L.W. Inabinette, and J.L. Whitbeck. 2009. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients. Wetlands 29 (2): 505–519.

    Article  Google Scholar 

  • Lovelock, C.E., T. Atwood, J. Baldock, C.M. Duarte, S. Hickey, P.S. Lavery, P. Masque, P.I. Macreadie, A.M. Ricart, O. Serrano, and A. Steve. 2017. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment 15 (5): 257–265.

    Article  Google Scholar 

  • Macek, P., and E. Rejmankova. 2007. Response of emergent macrophytes to experimental nutrient and salinity additions. Functional Ecology 21 (3): 478–488.

    Article  Google Scholar 

  • McKee, K.L., D.R. Cahoon, and I.C. Feller. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16 (5): 545–556.

    Article  Google Scholar 

  • McLeod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Bjork, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger, and B.R. Silliman. 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9 (10): 552–560.

    Article  Google Scholar 

  • McVoy, C., P.W. Said, J. Obeysekera, J.A. VanArman, and T.W. Drescher. 2011. Landscapes and hydrology of the predrainage Everglades. Gainesville, FL: University Press of Florida.

    Google Scholar 

  • Meeder, J.F., R.W. Parkinson, P.L. Ruiz, and M. Ross. 2017. Saltwater encroachment and prediction of future ecosystem response to the Anthropocene Marine Transgression, Southeast Saline Everglades, Florida. Hydrobiologica 803 (1): 29–48.

    Article  Google Scholar 

  • Mitsch, W.J. and J.G. Gosselink. 2007. Wetlands. 4th ed. Hoboken, NJ: Wiley.

    Google Scholar 

  • Morris, J.T., D.C. Barber, J.C. Callaway, R. Chambers, S.C. Hagen, C.S. Hopkinson, B.J. Johnson, P. Megonigal, S.C. Neubauer, T. Troxler, and C. Wigand. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earths Future 4 (4): 110–121.

    Article  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C. T. Nietch, B. Kjerfve, D. R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83 (10):2869–2877.

  • Nahlik, A.M., and M.S. Fennessy. 2016. Carbon storage in US wetlands. Nature Communications 7 (1): 13835.

    Article  CAS  Google Scholar 

  • Nerem, R.S., B.D. Beckley, J.T. Fasullo, B.D. Hamlington, D. Masters, and G.T. Mitchum. 2018. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences of the United States of America 115 (9): 2022–2025.

    Article  CAS  Google Scholar 

  • Neubauer, S.C. 2008. Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuarine Coastal and Shelf Science 78 (1): 78–88.

    Article  Google Scholar 

  • Neubauer, S.C., R.B. Franklin, and D.J. Berrier. 2013. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon. Biogeosciences 10 (12): 8171–8183.

    Article  CAS  Google Scholar 

  • Newman, S., J.B. Grace, and J.W. Koebel. 1996. Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: Implications for Everglades restoration. Ecological Applications 6 (3): 774–783.

    Article  Google Scholar 

  • Newman, S., H. Kumpf, J.A. Laing, and W.C. Kennedy. 2001. Decomposition responses to phosphorus enrichment in an Everglades (USA) slough. Biogeochemistry 54: 229-250.

  • Nyman, J.A., R.D. Delaune, H.H. Roberts, and W.H. Patrick. 1993. Relatinship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series 96: 269–279.

    Article  Google Scholar 

  • Nyman, J.A., R.J. Walters, R.D. Delaune, and W.H. Patrick. 2006. Marsh vertical accretion via vegetative growth. Estuarine Coastal and Shelf Science 69 (3-4): 370–380.

    Article  Google Scholar 

  • Osland, M.J., A.C. Spivak, J.A. Nestlerode, J.M. Lessmann, A.E. Almario, P.T. Heitmuller, M.J. Russell, K.W. Krauss, F. Alvarez, D.D. Dantin, J.E. Harvey, A.S. From, N. Cormier, and C.L. Stagg. 2012. Ecosystem development after mangrove wetland creation: Plant-soil change across a 20-year chronosequence. Ecosystems 15 (5): 848–866.

    Article  CAS  Google Scholar 

  • Pan, Y., R.J. Stevenson, P. Vaithiyanathan, J. Slate, and C.J. Richardson. 2000. Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, U.S.A. Freshwater Biology 44 (2): 339–353.

    Article  Google Scholar 

  • Pendleton, L., D.C. Donato, B.C. Murray, S. Crooks, W.A. Jenkins, S. Sifleet, C. Craft, J.W. Fourqurean, J.B. Kauffman, N. Marba, P. Megonigal, E. Pidgeon, D. Herr, D. Gordon, and A. Baldera. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. Plos One 7. https://doi.org/10.1371/journal.pone.0043542.

  • Price, R.M., M.R. Savabi, J.L. Jolicoeur, and S. Roy. 2010. Adsorption and desorption of phosphate on limestone in experiments simulating seawater intrusion. Applied Geochemistry 25 (7): 1085–1091.

    Article  CAS  Google Scholar 

  • Price, R.M., P.K. Swart, and J.W. Fourqurean. 2006. Coastal groundwater discharge – an additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia 569 (1):23–36.

  • Qualls, R.G., and C.J. Richardson. 2000. Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms. Soil Science Society of America Journal 64 (2): 799–808.

    Article  CAS  Google Scholar 

  • Qualls, R.G., and C.J. Richardson. 2008. Carbon cycling and dissolved organic matter export in the northern Everglades. In The Everglades experiments, ecological studies, ed. C.J. Richardson. New York: Springer.

    Google Scholar 

  • R Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 05 June 2016.

  • Rogers, K., and N. Saintilan. 2008. Relationships beetween surface elevation and groundwater in mangrove forests of Southeast Australia. Journal of Coastal Research 24: 63–69.

    Article  Google Scholar 

  • Ross, M.S., J.F. Meeder, J.P. Sah, P.L. Ruiz, and G.J. Telesnicki. 2000. The Southeast Saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science 11 (1): 101–112.

    Article  Google Scholar 

  • Sandoval, E., R.M. Price, D. Whitman, and A.M. Melesse. 2016. Long-term (11 years) study of water balance, flushing times and water chemistry of a coastal wetland undergoing restoration, Everglades, Florida, USA. Catena 144: 74–83.

    Article  CAS  Google Scholar 

  • Scharlemann, J.P.W., E.V.J. Tanner, R. Hiederer, and V. Kapos. 2014. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management 5 (1): 81–91.

    Article  CAS  Google Scholar 

  • Schrift, A.M., I.A. Mendelssohn, and M.D. Materne. 2008. Salt marsh restoration with sediment-slurry amendments following a drought induced large-scale disturbance. Wetlands 28 (4): 1071–1085.

    Article  Google Scholar 

  • Servais, S.J., S. Kominoski, S.P. Charles, E.E. Gaiser, V. Mazzei, T.G. Troxler, and B.J. Wilson. 2019. Testing effects of salinity and phosphorus loading on microbial functions in experimental freshwater wetlands. Geoderma 337: 1291–1300.

    Article  CAS  Google Scholar 

  • Sklar, F.H., M.J. Chimney, S. Newman, P. McCormick, D. Gawlik, S.L. Miao, C. McVoy, W. Said, J. Newman, C. Coronado, G. Crozier, M. Korvela, and K. Rutchey. 2005. The ecological-societal underpinnings of Everglades restoration. Frontiers in Ecology and the Environment 3: 161–169.

    Google Scholar 

  • Solorzano, L., and J.H. Sharp. 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural-waters. Limnology and Oceanography 25 (4): 754–757.

    Article  CAS  Google Scholar 

  • Sweet, W.V., R. Horton, R.E. Kopp, A.N. LeGrande, and A. Romanou. 2017. Sea level rise. In climate science special report: fourth national climate assessment, Volume I. In U.S. Global Change Research Program, ed. D.J. Wuebbles, D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock, 333–363. https://doi.org/10.7930/J0VM49F2.

    Chapter  Google Scholar 

  • Swift, M.J., O.W. Heal, and J.M. Anderson. 1979. Decomposition in terrestrial ecosystems. Oxford, UK: Blackwell Scientific.

    Google Scholar 

  • Tate, R.L.III. 1980. Microbial oxidation of histosols. Advances in Microbial Ecology 4:169–210.

  • Tilman, D. 1985. The resource-ratio hypotheis of plant sucession. American Naturalist 125 (6): 827–852.

    Article  Google Scholar 

  • Titus, J.G., and C. Richman. 2001. Maps of lands vulnerable to sea level rise: Modeled elevations along the US Atlantic and Gulf coasts. Climate Research 18: 205–228.

    Article  Google Scholar 

  • Trenberth, K.E., A.G. Dai, G. van der Schrier, P.D. Jones, J. Barichivich, K.R. Briffa, and J. Sheffield. 2014. Global warming and changes in drought. Nature Climate Change 4 (1): 17–22.

    Article  Google Scholar 

  • Troxler, T.G., D.L. Childers, and C.J. Madden. 2014. Drivers of decadal-scale change in southern Everglades wetland macrophyte communities of the coastal ecotone. Wetlands 34 (S1): 81–90.

    Article  Google Scholar 

  • Vogt, K.A., D.J. Vogt, and J. Bloomfield. 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil 200 (1): 71–89.

    Article  CAS  Google Scholar 

  • Volk, B.G. 1973. Everglades histosol subsidence: CO2 evolution as affected by soil type, temperature, and moisture. Soil and Crop Science Society of Florida Proceedings 32: 132–135.

  • Wdowinski, S., R. Bray, B.P. Kirtman, and Z.H. Wu. 2016. Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean & Coastal Management 126: 1–8.

    Article  Google Scholar 

  • Weston, N.B., S.C. Neubauer, D.J. Velinsky, M.A. Vile. 2014. Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120 (1–3):163–189.

  • Weston, N.B., M.A. Vile, S.C. Neubauer, and D.J. Velinsky. 2011. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102 (1-3): 135–151.

    Article  CAS  Google Scholar 

  • Whelan, K.R.T., T.J. Smith III, D.R. Cahoon, J.C. Lynch, and G.H. Anderson. 2005. Goundwater control of mangrove surfaxe elevation; shrink and swell varies with soil depth. Estuaries 28 (6): 833–843.

    Article  Google Scholar 

  • Wilson, B.J., B. Mortazavi, and R.P. Kiene. 2015. Spatial and temporal variability in methane and carbon dioxide exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary. Biogeochemistry 123 (3): 329–347.

    Article  CAS  Google Scholar 

  • Wilson, B.J., S. Servais, S.P. Charles, V. Mazzei, J.S. Kominoski, E. Gaiser, J. Richards, and T. Troxler. 2018. Declines in plant productivity drive carbon loss from brackish coastal wetland mesocosms exposed to saltwater intrusion. Estuaries and Coasts 28: 2092–2108.

    Google Scholar 

  • Wilson, B.J., S. Servais, S.P. Charles, V. Mazzei, J.S. Kominoski, E. Gaiser, J. Richards, and T. Troxler. 2019. Phosphorus alleviation of salinity stress: Effects of saltwater intrusion on an Everglades freshwater peat marsh. Ecology 100 (5): e02672. https://doi.org/10.1002/ecy.2672.

    Article  Google Scholar 

  • Woodroffe, C.D. 1990. The impact of sea-level rise on mangrove shorelines. Progress in Physical Geography 14 (4): 483–520.

    Article  Google Scholar 

  • Woodward, G., M.O. Gessner, P.S. Giller, V. Gulis, S. Hladyz, A. Lecerf, B. Malmqvist, B.G. Mckie, S.D. Tiegs, and H. Cariss. 2012. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science Magazine 336: 1438–1440.

    CAS  Google Scholar 

  • Xue, S.K. 2018. Appendix 3A-5: water year 2017 and five-year (water year 2013–2017) annual flows and total phosphorus loads and concentrations by structure and area. In 2018 South Florida environmental report—volume I. West Palm Beach, FL: South Florida Water Management District.

    Google Scholar 

  • Zimmermann, C.F., and C.W. Keefe. 1997. Method 440.0. Determination of carbon and nitrogen in sediments and particulates of estuarine/coastal waters using elemental analysis. Cincinnati, OH: U.S. Environmental Protection Agency, National Exposure Research Laboratory, Office of Research and Development.

    Google Scholar 

Download references

Acknowledgments

We thank Laura Baumann, Michael Kline, Michelle Robinson, and Patricia LeRoy for their help in the field and laboratory and Florida Department of Transportation, District 4, for permission and access to obtain freshwater peat cores. Sean Charles was supported by Florida International University (FIU) Teaching Assistantships, Dr. John Kominoski, and the FIU Dissertation Year Fellowship. This is contribution number 917 from the Southeast Environmental Research Center in the Institute of Water and Environment and contribution number 22 from the Sea Level Solutions Center from Florida International University.

Funding

Funding for this research was provided by the National Science Foundation’s Florida Coastal Everglades Long Term Ecological Research Program (DEB-1237517) and Florida Sea Grant (RC-S-56), with the cooperation of the Everglades Section of the South Florida Water Management District. Additional funding and support was provided by the Everglades Foundation and Everglades National Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Charles.

Additional information

Communicated by Paul A. Montagna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charles, S.P., Kominoski, J.S., Troxler, T.G. et al. Experimental Saltwater Intrusion Drives Rapid Soil Elevation and Carbon Loss in Freshwater and Brackish Everglades Marshes. Estuaries and Coasts 42, 1868–1881 (2019). https://doi.org/10.1007/s12237-019-00620-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00620-3

Keywords

Navigation