Skip to main content
Log in

High-Resolution Non-Hydrostatic Modeling of Frontal Features in the Mouth of the Columbia River

  • Short Communication
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Airborne data measured during the recent RIVET II field experiment has revealed that horizontally distributed thermal fingers regularly occur at the Mouth of Columbia River (MCR) during strong ebb tidal flows. The high-resolution, non-hydrostatic coastal model, NHWAVE, predicts salinity anomalies on the water surface which are believed to be associated with the thermal fingers. Model results indicate that large amplitude recirculation are generated in the water column between an oblique internal hydraulic jump and the North Jetty. Simulation results indicate that the billows of higher density fluid have sufficiently large amplitudes to interrupt the water surface, causing the prominent features of stripes on the surface. The current field is modulated by the frontal structures, as indicated by the vorticity field calculated from both the numerical model and data measured by an interferometric synthetic aperture radar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Armi, L., and D. Farmer. 1985. The internal hydraulics of the strait of Gibraltar and associated sills and narrows. Oceanologica Acta 8: 37–46.

    Google Scholar 

  • Baines, P.G. 2016. Internal hydraulic jumps in two-layer systems. Journal of Fluid Mechanics 787: 1–15.

    Article  Google Scholar 

  • Banas, N.S., P. MacCready, and B.M. Hickey. 2009. The Columbia River plume as cross-shelf exporter and along-coast barrier. Continental Shelf Research 29: 292–301. doi:10.1016/j.csr.2008.03.011.

    Article  Google Scholar 

  • Baptista, A.M., Y.L. Zhang, A. Chawla, M. Zulauf, C. Seaton, E.P. Myers III, J. Kindle, M. Wilkin, M. Burla, and P.J. Turner. 2005. A cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems: Part II Application to the Columbia River. Continental Shelf Research 25: 935–972. doi:10.1016/j.csr.2004.12.003.

    Article  Google Scholar 

  • Burla, M., A.M. Baptista, Y. Zhang, and S. Frolov. 2010. Seasonal and inter-annual variability of the Columbia River plume: a perspective enabled by multi-year simulation databases. Journal of Geophysical Research 115: C00B16. doi:10.1029/2008JC004964.

    Article  Google Scholar 

  • Elias, E., G. Gelfenbaum, and A. Van der Westhuysen. 2012. Validation of a coupled wave-flow model in a high-energy setting: the Mouth of the Columbia River. Journal of Geophysical Research - Oceans 117: C9. doi:10.1029/2012JC008105.

    Article  Google Scholar 

  • Garvine, R.W., and J.D. Monk. 1974. Frontal structure of a river plume. Journal of Geophysical Research 79: 2251–2259.

    Article  Google Scholar 

  • Geyer, W. R., A. C. Lavery, M. E. Scully, and J. H. Trowbridge. 2010. Mixing by shear instability at high Reynolds number. Geophysical Research Letters 37: L22607. doi:10.1029/2010GL045272.

    Article  Google Scholar 

  • Giddings, S.N., D.A. Fong, S.G. Monismith, C.C. Chickadel, K.A. Edwards, W.J. Plant, B. Wang, O.B. Fringer, A.R. Horner-Devine, and A.T. Jessup. 2012. Frontogenesis and frontal progression of a Trapping-Generated estuarine convergence front and its influence on mixing and stratification. Estuaries and Coasts 35: 665–681.

    Article  Google Scholar 

  • Gottlieb, S., C.W. Shu, and E. Tadmor. 2001. Strong stability-preserving high-order time discretization methods. SIAM Review 43: 89–112.

    Article  Google Scholar 

  • Hickey, B.M., R.M. Kudela, J.D. Nash, K.W. Bruland, W.T. Peterson, P. MacCready, E.J. Lessard, D.A. Jay, N.S. Banas, A.M. Baptista, E.P. Dever, P.M. Kosro, L.K. Kilcher, A.R. Horner-Devine, E.D. Zaron, R.M. McCabe, J.O. Peterson, P.M. Orton, J. Pan, and M.C. Lohan. 2010. River influences on shelf ecosystems: introduction and synthesis. Journal of Geophysical Research 115: C00B17. doi:10.1029/2009JC005452.

    Article  Google Scholar 

  • Honegger, D.A. 2016. Intratidal to Interseasonal Variability of Oblique, Internal Hydraulic Jumps at a Stratified Estuary Mouth, 2016 Ocean Sciences Meeting, abstract no. 93651, New Orleans, LA.

  • Horner-Devine, A.R., C.C. Chickadel, and D.G. MacDonald. 2013. Coherent Structures and Mixing at a River Plume Front. Coherent Flow Structures at Earth’s Surface, eds. Venditti J.G., Best J.L., Church M., and Hardy R.J. Chichester, John Wiley & Sons, Ltd. doi:10.1002/9781118527221.ch23.

  • Hunt, J.C.R., A. Wray, and P. Moin. 1988. Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88.

  • Klingbeil, K., and H. Burchard. 2013. Implementation of a direct nonhydrostatic pressure gradient discretisation into a layered ocean model. Ocean Modelling 65: 64–77. doi:10.1016/j.ocemod.2013.02.002.

    Article  Google Scholar 

  • Liu, Y., P. MacCready, and B. M. Hickey. 2009. Columbia River plume patterns in summer 2004 as revealed by a hindcast coastal ocean circulation model. Geophysical Research Letters 36: L02601. doi:10.1029/2008GL036447.

    Google Scholar 

  • Liu, Y., P. MacCready, B.M. Hickey, E.P. Dever, P.M. Kosro, and N.S. Banas. 2009a. Evaluation of a coastal ocean circulation model for the Columbia River plume in summer 2004. Journal of Geophysical Research 114: C00B04. doi:10.1029/2008JC004929 10.1029/2008JC004929.

  • Liu, Y., M.P. MacCready, and B.M. Hickey. 2009b. Columbia River plume patterns in summer 2004 as revealed by a hindcast coastal ocean circulation model. Geophysical Research Letters 36: L02601. doi:10.1029/2008GL036447.

  • Ma, G., F. Shi, and J.T. Kirby. 2012. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling 43-44: 22–35.

    Article  Google Scholar 

  • Ma, G., F. Shi, and J.T. Kirby. 2013. Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Modelling 69: 146–165.

    Article  Google Scholar 

  • McCabe, R.M., P. MacCready, and B.M. Hickey. 2008. Ebb-tide dynamics and spreading of a large river plume. Journal of Physical Oceanography 113: C08027.

    Google Scholar 

  • MacCready, P., N.S. Banas, B.M. Hickey, E.P. Dever, and Y. Liu. 2009. A model study of tide- and wind-induced mixing in the Columbia River estuary and plume. Continental Shelf Research 29: 278–291. doi:10.1016/j.csr.2008.03.015.

    Article  Google Scholar 

  • MacDonald, D.G., and W.R. Geyer. 2004. Turbulent energy production and entrainment at a highly stratified estuarine front. Journal of Geophysical Research 109: C05004. doi:10.1029/2003JC002094.

    Article  Google Scholar 

  • Nash, J.D., and J.N. Moum. 2005. River plumes as a source of large amplitude internal waves in the coastal ocean. Nature 437: 400–403. doi:10.1038/nature03936.

    Article  CAS  Google Scholar 

  • Nash, J.D., L. Kilcher, and J.N. Moum. 2009. Structure and composition of a strongly stratified, tidally pulsed river plume. Journal of Geophysical Research 114: C00B12. doi:10.1029/2008JC005036.

    Article  Google Scholar 

  • O’Donnell, J. 1993. Surface front in Estuaries: a review. Estuaries 16(1): 12–39.

    Article  Google Scholar 

  • Pacanowski, R.C., and G.H. Philander. 1981. Parameterization of vertical mixing in numerical models of tropical oceans. Journal of Physical Oceanography 11: 1443–1451.

    Article  Google Scholar 

  • Plant, W.J., R. Branch, G. Chatham, C.C. Chickadel, K. Jayes, B. Hayworth, A. Horner-Devine, A. Jessup, D.A. Fong, O.B. Fringer, S.N. Giddings, S. Monismith, and B. Wang. 2009. Remotely sensed river surface features compared with modeling and in situ measurements. Journal of Geophysical Research 114: C11002. doi:10.1029/2009JC005440.

    Article  Google Scholar 

  • Reeder, D.B. 2014. Acoustical characterization of the Columbia River Estuary, 2014 AGU Fall Meeting, Nearshore Process session, San Francisco, CA, December 15 19, 2014.

  • Shi, J., J.T. Kirby, G. Ma, G. Wu, C. Tong, and J. Zheng. 2015. Pressure decimation and interpolation (PDI) method for a baroclinic non-hydrostatic model, Ocean Modelling. doi:10.1016/j.ocemod.2015.09.010.

  • Stashchuk, N., and V. Vlasenko. 2009. Generation of internal waves by a supercritical stratified plume. Journal of Geophysical Research 114: C01004. doi:10.1029/2008JC004851.

    Article  Google Scholar 

  • Toro, E.F. 2009. Riemann solvers and numerical methods for fluid dynamics: a practical introduction, third ed. New York: Springer.

    Book  Google Scholar 

  • Trump, C.L., and G.O. Marmorino. 2002. Mapping small-scale along-front structure using ADCP acoustic backscatter range-bin data. Estuaries 26(4A): 878–884.

    Google Scholar 

  • Vitousek, and O.B. Fringer. 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modelling 40(1): 72–86. doi:10.1016/j.ocemod.2011.07.002.

    Article  Google Scholar 

  • Vlasenko, V., N. Stashchuk, M.E. Inall, and J.E. Hopkins. 2014. Tidal energy conversion in a global hot spot: On the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break. J. Geophys. Res. Oceans 119: 3249–3265. doi:10.1002/2013JC009708.

    Article  Google Scholar 

  • Wang, B., O.B. Fringer, S.N. Giddings, and D.A. Fong. 2009. High resolution simulations of a macrotidal estuary using SUNTANS. Ocean Modelling 26: 60–85. doi:10.1016/j.ocemod.2008.08.006.

    Article  CAS  Google Scholar 

  • Warner, J.C., C.R. Sherwood, R.P. Signell, C. Harris, and H.G. Arango. 2008. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers and Geosciences 34: 1284–1306.

    Article  Google Scholar 

  • Zhang, Y.L., and A.M. Baptista. 2008. A semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation with hybrid vertical coordinates. Ocean Modelling 21(3–4): 71–96. doi:10.1016/j.ocemod.2007.11.005.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation, Physical Oceanography Program (OCE-1334325, OCE-1435147 and OCE-1334641), and the Office of Naval Research, Littoral Geosciences and Optics Program (N00014-10-1-0188; N00014-15-1-2612) and (N00014-10-1-0932). Numerical simulations were performed on UD’s Community Cluster, mills.hpc.udel.edu, operated by UD IT group. The authors would like to acknowledge Mick Haller and David Honegger of the Oregon State University and Craig McNeil of the University of Washington for useful discussion and insight from their data, and Guy Gelfenhaum and the USGS for the detailed channel bathymetry in Fig. 1b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyan Shi.

Additional information

Communicated by: David K. Ralston.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 102 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Chickadel, C.C., Hsu, TJ. et al. High-Resolution Non-Hydrostatic Modeling of Frontal Features in the Mouth of the Columbia River. Estuaries and Coasts 40, 296–309 (2017). https://doi.org/10.1007/s12237-016-0132-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0132-y

Keywords

Navigation