Skip to main content
Log in

Cell-Specific Alkaline Phosphatase Expression by Phytoplankton from Winyah Bay, South Carolina, USA

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Alkaline phosphatase expression by phytoplankton from two sites in Winyah Bay, SC, USA was investigated using nutrient-addition bioassays and cell-specific enzyme-labeled fluorescence (ELF) measurements. Our aim was to determine whether expression was group- or species-specific within the phytoplankton community. Diatoms dominated the riverine site in May, the coastal site in July, and both sites in August. Phytoplankton growth was limited by nitrogen (N) availability at the coastal site in May and the riverine site in August, but phosphate limitation was not observed. Alkaline phosphatase expression ranged from ∼30% of cells enumerated to less than 1% and was significantly reduced by inorganic phosphorus (P; 10 μM P) additions. Expression was restricted to species with low abundance, and there were no shifts in community composition consistent with alkaline phosphatase expression. Lack of phosphate limitation at higher-than-Redfield N/P ratios (up to 40:1), however, points to a potentially wider role of dissolved organic phosphorus in nutrition of Winyah Bay phytoplankton than indicated by the ELF assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ammerman, J.W. 1991. Role of ecto-phosphohydrolases in phosphorus regeneration in estuarine and coastal ecosystems. In Microbial Enzymes in Aquatic Environments, ed. R.J. Chrost, 165–186. New York: Springer.

    Google Scholar 

  • Ammerman, J.W. and F. Azam. 1985. Bacterial 5′-nucleotidase in aquatic ecosystems: A novel mechanism of phosphorus regeneration. Science 227: 1338–1340. doi:10.1126/science.227.4692.1338.

    Article  CAS  Google Scholar 

  • Benitez-Nelson, C.R. 2000. The biogeochemical cycling of phosphorus in marine systems. Earth Science Reviews 51: 109–135. doi:10.1016/S0012-8252(00)00018-0.

    Article  CAS  Google Scholar 

  • Bentzen, E., W.D. Taylor, and E.S. Millard. 1992. The importance of dissolved organic phosphorus to phosphorus uptake by limnetic plankton. Limnology and Oceanography 37: 217–231.

    CAS  Google Scholar 

  • Björkman, K. and D.M. Karl. 1994. Bioavailability of inorganic and organic phosphorus compounds to natural assemblages of microorganisms in Hawaiian coastal waters. Marine Ecology Progress Series 111: 265–273. doi:10.3354/meps111265.

    Article  Google Scholar 

  • Cao, X., C. Song, Q. Li, and Y. Zhou. 2007. Dredging effects on P status and phytoplankton density and composition during winter and spring in Lake Taihu, China. Hydrobiologia 581: 287–295. doi:10.1007/s10750-006-0516-2.

    Article  CAS  Google Scholar 

  • Cembella, A.D., N.J. Antia, and P.J. Harrison. 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part 1. CRC Critical Reviews of Microbiology 10: 317–391. doi:10.3109/10408418209113567.

    Article  CAS  Google Scholar 

  • Conley, D.J., W.M. Smith, J.C. Cornwell, and T.R. Fisher. 1995. Transformation of particle-bound phosphorus at the land-sea interface. Estuarine, Coastal and Shelf Science 40: 161–176. doi:10.1016/S0272-7714(05)80003-4.

    Article  CAS  Google Scholar 

  • Conley, D.J., H.W. Paerl, R.W. Howarth, D.F. Boesch, S.P. Seitzinger, K.E. Havens, C. Lancelot, and G.E. Likens. 2009. Controlling eutrophication: Nitrogen and phosphorus. Science 323: 1014–1015. doi:10.1126/science.1167755.

    Article  CAS  Google Scholar 

  • Cotner, J. and R. Wetzel. 1992. Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton. Limnology and Oceanography 37: 232–243.

    CAS  Google Scholar 

  • Cotner, J.B., J.W. Ammerman, E.R. Pelle, and E. Bentzen. 1997. Phosphorus-limited bacterioplankton growth in the Sargasso Sea. Aquatic Microbial Ecology 13: 141–149. doi:10.3354/ame013141.

    Article  Google Scholar 

  • Dignum, M., H.L. Hoogveld, H.C.P. Matthijs, H.J. Laanbroek, and R. Pel. 2004. Detecting the phosphate status of phytoplankton by enzyme-labelled fluorescence and flow cytometry. FEMS Microbial Ecology 48: 29–38. doi:10.1016/j.femsec.2003.12.007.

    Article  CAS  Google Scholar 

  • Droop, M.R. 1973. Some thoughts on nutrient limitation in algae. Journal of Phycology 9: 264–272.

    CAS  Google Scholar 

  • Dyhrman, S. 2005. Ectoenzymes in Prorocentrum minimum. Harmful Algae 4: 619–627. doi:10.1016/j.hal.2004.08.011.

    Article  CAS  Google Scholar 

  • Dyhrman, S.T. and B. Palenik. 1999. Phosphate stress in cultures and field populations of the dinoflagellate Prorocentrum minimum detected by a single-cell alkaline phosphatase assay. Applied and Environmental Microbiology 65: 3205–3212.

    CAS  Google Scholar 

  • Dyhrman, S.T. and B. Palenik. 2003. Characterization of ectoenzyme activity and phosphate-regulated proteins in the coccolithophorid Emiliania huxleyi. Journal of Plankton Research 25: 1215–1225.

    Article  CAS  Google Scholar 

  • Dyhrman, S.T. and K.C. Ruttenberg. 2006. Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus remineralization. Limnology and Oceanography 51: 1381–1390.

    CAS  Google Scholar 

  • Fang, T.H. 2000. Partitioning and behavior of different forms of phosphorus in the Tanshui Estuary and one of its tributaries, Northern Taiwan. Estuarine, Coastal and Shelf Science 50: 689–70. doi:10.1006/ecss.1999.0604.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., J.C. Zieman, and V.N. Powell. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnology and Oceanography 37: 162–171.

    Article  CAS  Google Scholar 

  • Geider, R.J. and J. LaRoche. 2002. Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology 37: 1–17. doi:10.1017/S0967026201003456.

    Article  Google Scholar 

  • Glibert, P.M., C.A. Heil, D. Hollander, M. Revilla, A. Hoare, J. Alexander, and S. Murasko. 2004. Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial bloom in Florida Bay. Marine Ecology Progress Series 280: 73–83. doi:10.3354/meps280073.

    Article  Google Scholar 

  • González-Gil, S., B.A. Keafer, R.V.M. Jovine, A. Aguilera, S. Lu, and D.M. Anderson. 1998. Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Marine Ecology Progress Series 164: 21–35. doi:10.3354/meps164021.

    Article  Google Scholar 

  • Guildford, S.J. and R.E. Hecky. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography 45: 1213–1223.

    CAS  Google Scholar 

  • Huang, Z., W. You, R.P. Haugland, V.B. Paragas, N.A. Olson, and R.P. Haugland. 1993. A novel fluorogenic substrate for detecting alkaline phosphatase activity in situ. Journal of Histochemistry and Cytochemistry 41: 313–317.

    CAS  Google Scholar 

  • Jansson, M., H. Olsson, and K. Pettersson. 1988. Phosphatases: Origin, characteristics and function in lakes. Hydrobiologia 170: 157–175.

    CAS  Google Scholar 

  • Jeffrey, S., R. Mantoura, and S. Wright. 1997. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Paris: United Nations Educational, Scientific and Cultural Organization Publishing.

    Google Scholar 

  • Karl, D.M. and K. Björkman. 2002. Dynamics of DOP. In Biogeochemistry of Marine Dissolved Organic Matter, ed. C.A. Carlson, 249–366. San Diego, California: Academic.

    Chapter  Google Scholar 

  • Karl, D.M. and K. Yanagi. 1997. Partial characterization of the dissolved organic phosphorus pool in the oligotrophic North Pacific Ocean. Limnology and Oceanography 42: 1398–1405.

    Article  CAS  Google Scholar 

  • Kawaguchi, T., A.J. Lewitus, C.M. Aelion and H.N. McKellar. 1997. Can urbanization limit iron availability to estuarine algae? Journal of Experimental Marine Biology and Ecology 213: 53–69.

    Article  CAS  Google Scholar 

  • Klug, J. 2006. Nutrient limitation in the lower Housatonic River estuary. Estuaries and Coasts 29: 831–840.

    CAS  Google Scholar 

  • Koroleff, F. 1983. Determination of phosphorus. In Methods of Seawater Analysis, ed. K. Grasshoff, M. Ehrhardt, and K. Kremling, 117–156. New York: Verlag-Chemie.

    Google Scholar 

  • Krom, M.D., N. Kress, S. Benner, and L.I. Gordon. 1991. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnology and Oceanography 36: 424–432.

    Article  CAS  Google Scholar 

  • Kuenzler, E.J. and J.P. Perras. 1965. Phosphatases of marine algae. Biological Bulletin 128: 271–284. doi:10.2307/1539555.

    Article  Google Scholar 

  • Labry, C., D. Delmas, and A. Herbland. 2005. Phytoplankton and bacterial alkaline phosphatase activities in relation to phosphate and DOP availability within the Gironde plume waters (Bay of Biscay). Journal of Experimental Marine Biology and Ecology 318: 213–225. doi:10.1016/j.jembe.2004.12.017.

    Article  CAS  Google Scholar 

  • Lawrenz, E., J.L. Pinckney, M.L. Ranhofer and T.L. Richardson. 2009. Spectral irradiance and phytoplankton community composition in a blackwater-dominated estuary, Winyah Bay, South Carolina, USA. Estuarine, Coastal and Shelf Science, in review.

  • Lebo, M.E. and J.H. Sharp. 1993. Distribution of phosphorus along the Delaware, an urbanized coastal plane estuary. Estuaries 16: 290–301. doi:10.2307/1352502.

    Article  CAS  Google Scholar 

  • Lewitus, A.J. and A.F. Holland. 2003. Initial results from a multi-institutional collaboration to monitor harmful algal blooms in South Carolina. Proceedings of the EMAP Symposium 2001: Coastal Monitoring Through Partnership, Environmental Monitoring and Assessment 81: 361-371. doi:10.1023/A:1021362032676

  • Lewitus, A.J., D.L. White, R.G. Tymowski, M.E. Geesey, S.N. Hymel, and P.A. Noble. 2005. Adapting the CHEMTAX method for assessing phytoplankton taxonomic composition in southeastern U.S. estuaries. Estuaries 28: 160–172. doi:10.1007/BF02732761.

    Article  CAS  Google Scholar 

  • Li, H., M.J.W. Veldhuis, and A.F. Post. 1998. Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Marine Ecology Progress Series 173: 107–115. doi:10.3354/meps173107.

    Article  Google Scholar 

  • Litchman, E. and B.L.V. Nguyen. 2008. Alkaline phosphatase activity as a function of internal phosphorus concentration in freshwater phytoplankton. Journal of Phycology 44: 1379–1383. doi:10.1111/j.1529-8817.2008.00598.x.

    Article  CAS  Google Scholar 

  • Lomas, M.W., A. Swain, K. Shelton, and J. Ammerman. 2004. Taxonomic variability of phosphorus stress in Sargasso Sea plankton. Limnology and Oceanography 49: 2303–2310.

    Article  Google Scholar 

  • Mackey, M.D., D.J. Mackey, H.W. Higgins, and S.W. Wright. 1996. CHEMTAX- A program for estimating class abundances from chemical markers: Application to HPLC measurements of phytoplankton. Marine Ecology Progress Series 11: 265–283. doi:10.3354/meps144265.

    Article  Google Scholar 

  • Mackey, K.R.M., R.G. Labiosa, M. Calhoun, J.H. Street, A.F. Post, and A. Paytan. 2007. Phosphorus availability, phytoplankton community dynamics and taxon-specific phosphorus status in the Gulf of Aqaba, Red Sea. Limnology and Oceanography 52: 873–885.

    Article  CAS  Google Scholar 

  • Mallin, M.A., L.B. Cahoon, M.R. McIver, D.C. Parsons, and G.C. Shank. 1999. Alternation of factors limiting phytoplankton production in the Cape Fear River Estuary. Estuaries 22: 825–836. doi:10.2307/1353064.

    Article  CAS  Google Scholar 

  • Meybeck, M. 1993. C, N, P and S in rivers: from sources to global inputs. In Interactions of C, N, P, and S Biogeochemical Cycles and Global Change, ed. R. Wollast, F. MacKenzie, and L. Chou, 163–193. Berlin: Springer.

    Google Scholar 

  • Monaghan, E.J. and K.C. Ruttenberg. 1999. Dissolved organic phosphorus in the coastal ocean: Reassessment of available methods and seasonal phosphorus profiles from the Eel River Shelf. Limnology and Oceanography 44: 1702–1714.

    Article  CAS  Google Scholar 

  • Mortazavi, B., R.L. Iverson, W.M. Landing, and W. Huang. 2000. Phosphorus budget of Apalachicola Bay: A river-dominated estuary in the northeastern Gulf of Mexico. Marine Ecology Progress Series 198: 33–42. doi:10.3354/meps198033.

    Article  CAS  Google Scholar 

  • Murrell, M.C., R.S. Stanley, E.M. Lores, G.T. Didonato, L.M. Smith, and D.A. Flemer. 2002. Evidence that phosphorus limits phytoplankton growth in a Gulf of Mexico estuary: Pensacola Bay, Florida, U.S.A. Bulletin of Marine Science 70: 155–167.

    Google Scholar 

  • Nicholson, D., S. Dyhrman, F. Chavez, and A. Payton. 2006. Alkaline phosphatase activity in the phytoplankton communities of Monterey Bay and San Francisco Bay. Limnology and Oceanography 51: 874–883.

    Article  Google Scholar 

  • Orchard, E., E. Webb, and S.T. Dyhrman. 2003. Characterization of phosphorus-regulated genes in Trichodesmium spp. Biological Bulletin 205: 230–231. doi:10.2307/1543268.

    Article  CAS  Google Scholar 

  • Ou, L., B. Huang, L. Lin, H. Hong, F. Zhang, and Z. Chen. 2006. Phosphorus stress of phytoplankton in the Taiwan Strait determined by bulk and single-cell alkaline phosphatase activity assays. Marine Ecology Progress Series 327: 95–106. doi:10.3354/meps327095.

    Article  CAS  Google Scholar 

  • Patchineelam, S.M., B. Kjerfve, and L.R. Gardner. 1999. A preliminary sediment budget for the Winyah Bay Estuary, South Carolina, USA. Marine Geology 162: 133–144. doi:10.1016/S0025-3227(99)00059-6.

    Article  Google Scholar 

  • Perry, M.J. 1972. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Marine Biology 15: 113–119. doi:10.1007/BF00353639.

    Article  CAS  Google Scholar 

  • Pinckney, J.L., D.F. Millie, K.E. Howe, H.W. Paerl, and J.P. Hurley. 1996. Flow scintillation counting of 14C-labled microalgal photosynthetic pigments. Journal of Plankton Research 18: 1867–1880. doi:10.1093/plankt/18.10.1867.

    Article  CAS  Google Scholar 

  • Pinckney, J.L., H.W. Paerl, M.B. Harrington, and K.E. Howe. 1998. Annual cycles of phytoplankton community structure and bloom dynamics in the Neuse River estuary, North Carolina. Marine Biology 131: 371–381. doi:10.1007/s002270050330.

    Article  Google Scholar 

  • Rengefors, K., K. Petterson, T. Blenchner, and D.M. Anderson. 2001. Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: Application of a novel method. Journal of Plankton Research 23: 435–443. doi:10.1093/plankt/23.4.435.

    Article  CAS  Google Scholar 

  • Rengefors, K., K. Rutttenberg, C.L. Haupert, C. Taylor, B.L. Howes, and D.M. Anderson. 2003. Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton. Limnology and Oceanography 48: 1167–1175.

    Article  CAS  Google Scholar 

  • Rinker, K.R. and R.T. Powell. 2006. Dissolved organic phosphorus in the Mississippi River plume during spring and fall 2002. Marine Chemistry 102: 170–179. doi:10.1016/j.marchem.2005.09.013.

    Article  CAS  Google Scholar 

  • Ruttenberg, K.C. and S.T. Dyhrman. 2005. Temporal and spatial variability of dissolved organic and inorganic phosphorus, and metrics of phosphorus bioavailability in an upwelling-dominated coastal system. Journal of Geophysical Research 110: 1–22. doi:10.1029/2004JC002837.

    Article  CAS  Google Scholar 

  • Sakshaug, E., E. Granéli, M. Elbrächter, and H. Kayser. 1984. Chemical composition and alkaline phosphatase activity of nutrient-saturated and P-deficient cells of four marine dinoflagellates. Journal of Experimental Marine Biology and Ecology 77: 241–254. doi:10.1016/0022-0981(84)90122-9.

    Article  CAS  Google Scholar 

  • Scheiner, S. and J. Gurevich. 1993. Design and Analysis of Ecological Experiments. New York: Chapman and Hall.

    Google Scholar 

  • Schindler, D.W., R.E. Hecky, D.L. Findlay, M.P. Stainton, B.R. Parker, M.J. Paterson, K.G. Beaty, M. Lyng, and S.E.M. Kaisan. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences 105: 11254–11258. doi:10.1073/pnas.0805108105.

    Article  Google Scholar 

  • Schlüter, L., F. Mǿhlenberg, H. Havskum, and S. Larsen. 2000. The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: Testing the influence of light and nutrients on pigment/chlorophyll a ratios. Marine Ecology Progress Series 192: 49–63. doi:10.3354/meps192049.

    Article  Google Scholar 

  • Smith, S.V. and M.J. Atkinson. 1984. Phosphorus limitation of net production in a confined ecosystem. Nature 307: 626–627. doi:10.1038/307626a0.

    Article  CAS  Google Scholar 

  • Solórzano, L. and J.H. Sharp. 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography 25: 754–758.

    Article  Google Scholar 

  • South Carolina Sea Grant Consortium, 1992. Characterization of the Physical, Chemical and Biological Conditions and Trends in Three South Carolina Estuaries: 1970–1985, Vol. 2. Winyah Bay and North Inlet Estuaries. Charleston, South Carolina: South Carolina Sea Grant Consortium.

  • Štrojsová, A., J. Vrba, J. Nedoma, and K. Šimek. 2005. Extracellular phosphatase activity of freshwater phytoplankton exposed to different in situ phosphorus concentrations. Marine and Freshwater Research 56: 417–424. doi:10.1071/MF04283.

    Article  Google Scholar 

  • Suzumura, M., K. Ishikawa, and H. Ogawa. 1998. Characterization of dissolved organic phosphorus in coastal seawater using ultrafiltration and phosphohydrolytic enzymes. Limnology and Oceanography 43: 1553–1564.

    Article  CAS  Google Scholar 

  • Uterhmöhl, H. 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung für Limnologie 9: 1–38.

    Google Scholar 

  • Vahtera, E., M. Laamanen, and J.-M. Rintala. 2007. Use of different phosphorus sources by the bloom-forming cyanobacteria Aphanizomenon flos-aquae and Nodularia spumigena. Aquatic Microbial Ecology 46: 225–237. doi:10.3354/ame046225.

    Article  Google Scholar 

  • van der Zee, C., N. Roevros, and L. Chou. 2007. Phosphorus speciation, transformation and retention in the Scheldt estuary (Belgium/The Netherlands) from the freshwater tidal limits to the North Sea. Marine Chemistry 106: 76–91. doi:10.1016/j.marchem.2007.01.003.

    Article  CAS  Google Scholar 

  • Wright, S.W., D.P. Thomas, H.J. Marchant, H.W. Higgins, M.D. Mackey, and D.J. Mackey. 1996. Analysis of phytoplankton of the Australian sector of the Southern Ocean: Comparisons of microscopy and size frequency data with interpretation of pigment HPLC data using the ‘CHEMTAX’ matrix factorization program. Marine Ecology Progress Series 11: 285–298. doi:10.3354/meps144285.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the hard work of Steven Schmidt, Kent Ray, Jean-Marie Buschur, Elyse Walker, Max Bangs, and Dale Soblo who collected and filtered many liters of water. Thanks to Renée Styles and Lois Lane for technical assistance. Special thanks to Sonya Dyhrman and Karin Rengefors for help with the ELF assay and for answering multiple questions from TLR. We are grateful to two anonymous reviewers for their constructive comments. This work was funded in part by the South Carolina Sea Grant Program (grant numbers P/M-2 J-V410 and R/ER 29), and the Slocum-Lunz Foundation (to MLR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammi L. Richardson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranhofer, M.L., Lawrenz, E., Pinckney, J.L. et al. Cell-Specific Alkaline Phosphatase Expression by Phytoplankton from Winyah Bay, South Carolina, USA. Estuaries and Coasts 32, 943–957 (2009). https://doi.org/10.1007/s12237-009-9180-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-009-9180-x

Keywords

Navigation