Skip to main content

Advertisement

Log in

Consumer Diversity Enhances Secondary Production by Complementarity Effects in Experimental Ciliate Assemblages

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Diversity within distinct trophic groups is proposed to increase ecosystem functions such as the productivity of this group and the efficiency of resource use. This proposition has mainly been tested with plant communities, consumer assemblages, and multitrophic microbial assemblages. Very few studies tested how this diversity–productivity relationship varies under different environmental regimes such as disturbances. Coastal benthic assemblages are strongly affected by temporal instability of abiotic conditions. Therefore, we manipulated benthic ciliate species richness in three laboratory experiments with three diversity levels each and analyzed biomass production over time in the presence or absence of a single application of a disturbance (ultraviolet-B [UVB] radiation). In two out of three experiments, a clear positive relationship between diversity and productivity was found, and also the remaining experiment showed a small but nonsignificant effect of diversity. Disturbance significantly reduced the total ciliate biomass, but did not alter the relation between species richness and biomass production. Significant overyielding (i.e., higher production at high diversity) was observed, and additive partitioning indicated that this was caused by niche complementarity between ciliate species. Species-specific contribution to the total biomass varied idiosyncratically with species richness, disturbance, and composition of the community. We thus present evidence for a significant effect of consumer diversity on consumer biomass in a coastal ciliate assemblage, which remained consistent at different disturbance regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balvanera, P., A. B. Pfisterer, N. Buchmann, J.-S. He, T. Nakashizuka, D. Raffaelli and B. Schmid. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters 9:1146–1156.

    Article  Google Scholar 

  • Berninger, U.-G. and S. S. Epstein. 1995. Vertical distribution of benthic ciliates in response to the oxygen concentration in an intertidal North Sea sediment. Aquatic Microbial Ecology 9:229–236.

    Article  Google Scholar 

  • Bruno, J. F. and M.I. O’Connor 2005. Cascading effects of predator diversity and omnivory in a marine food web. Ecology Letters 8:1048–1056.

    Article  Google Scholar 

  • Byrnes, J, J. J. Stachowicz, K. M. Hultgren et al. 2006. Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour. Ecology Letters 9:61–71.

    Google Scholar 

  • Byrnes, J. E., P. L. Reynolds and J. J. Stachowicz. 2007 Invasions and extinctions reshape coastal marine food webs. PLoS ONE 2:e295.

    Google Scholar 

  • Cardinale, B. J., D. S. Srivastava, J. E. Duffy, et al. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992.

    Article  CAS  Google Scholar 

  • Claessen, D., A. M. de Roos and L. Persson 2004. Population dynamic theory of size-dependent cannibalism. Proceedings of the Royal Society of London B 271:333–340.

    Article  Google Scholar 

  • Dietrich, D. and H. Arndt 2000. Biomass partitioning of benthic microbes in a Baltic inlet: Relationships between bacteria, algae, heterotrophic flagellates and ciliates. Marine Biology 136:309–322.

    Article  Google Scholar 

  • Duffy, J. E., K. S. Macdonald, J. M. Rhode, and J. D. Parker. 2001. Grazer diversity, functional redundancy, and productivity in seagrass beds: An experimental test. Ecology 82:2417–2434.

    Article  Google Scholar 

  • Duffy, J. E., J. P. Richardson, and E. A. Canuel. 2003. Grazer diversity effects on ecosystem functioning in seagrass beds. Ecology Letters 6:637–645.

    Article  Google Scholar 

  • Duffy, J.E., J.P. Richardson and K.E. France 2005. Ecosystem consequences of diversity depend on food chain length in estuarine vegetation. Ecology Letters 8:301–309.

    Article  Google Scholar 

  • Epstein S. S. 1997. Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microbial Ecology 34:188–198.

    Article  Google Scholar 

  • Finke, D.L. and R. F. Denno 2005. Predator diversity and the functioning of ecosystems: The role of intraguild predation in dampening trophic cascades. Ecology Letters 8:1299–1306.

    Article  Google Scholar 

  • Gamfeldt, L., H. Hillebrand and P. R. Jonsson 2005. Species richness changes across two trophic levels simultaneously affect prey and consumer biomass. Ecology Letters 8:696–703.

    Article  Google Scholar 

  • Hooper, D. U., F. S. Chapin III, J. J. Ewel, et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75:3–35.

    Article  Google Scholar 

  • Huston, M. A. 1997. Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460.

    Article  Google Scholar 

  • Kinzig, A. P., S. W. Pacala and D. Tilman 2002. The Functional Consequences of Biodiversity. Princeton: Princeton University Press.

    Google Scholar 

  • Lass, H. U. and L. Magaard. 1995. Wasserstandsschwankungen und Seegang. In Meereskunde der Ostsee, ed. G. Rheinheimer 68–74. Berlin: Springer Verlag.

    Google Scholar 

  • Loreau, M. 2000. Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos 91:3–17.

    Article  Google Scholar 

  • Loreau, M. and A. Hector. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76.

    Article  CAS  Google Scholar 

  • Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman, and D. A. Wardle. 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294:804–808.

    Article  CAS  Google Scholar 

  • Loreau M., A. Downing, M. Emmerson et al. 2002. A new look at the relationship between diversity and stability. In Biodiversity and ecosystem functioning, ed. P. Inchausti, 79–91. Oxford, U.K.: Oxford University Press

    Google Scholar 

  • Mikola, J. and H. Setälä. 1998. Relating species diversity to ecosystem functioning: Mechanistic backgrounds and experiental approach with a decomposer food web. Oikos 83:180–194.

    Article  Google Scholar 

  • Naeem, S. and S. Li. 1998. Consumer species richness and autotrophic biomass. Ecology 79:2603–2615.

    Google Scholar 

  • Pacala, S. W. and D. Tilman. 2001. The transition from sampling to complementarity. In The functional consequences of biodiversity, D. Tilman, ed. 151–166. Princ0eton: Princeton University Press

    Google Scholar 

  • Petchey, O. L., P. T. McPhearson, T. M. Casey, and P. J. Morin. 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72.

    Article  CAS  Google Scholar 

  • Petchey, O. L., A. L. Downing, G. G. Mittelbach et al. 2004. Species loss and the structure and functioning of multitrophic aquatic systems. Oikos 104:467–478.

    Article  Google Scholar 

  • Pfisterer, A. B. and B. Schmid. 2002. Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 416:84–86.

    Article  CAS  Google Scholar 

  • Sanders, R. W., A. L. Macaluso, T. J. Sardina, and D. L. Mitchell. 2005. Photoreactivation in two freshwater ciliates: Differential responses to variations in UV-B flux and temperature. Aquatic Microbial Ecology 40:283–292.

    Article  Google Scholar 

  • Snyder,W. E., G. B. Snyder, D. L. Finke and C. S. Straub 2006. Predator biodiversity strengthens herbivore suppression. Ecology Letters 9:789–796.

    Article  Google Scholar 

  • Sommeruga, R. and G. J. Buma 2000. UV-induced cell damage is species-specific among aquatic phagotrophic protists. Journal of Eukaryotic Microbiology 47:450–455.

    Article  Google Scholar 

  • Steiner, C. F. , T. L. Darcy-Hall, N. J. Dorn et al. 2005. The influence of consumer diversity and indirect facilitation on trophic level biomass and stability. Oikos 110:556–566.

    Article  Google Scholar 

  • Stoecker, D. K. and D. J. Gifford. 1994. Preservation of marine planktonic ciliates: Losses and cell shrinkage during fixation. Marine Ecology Progress Series 110:293–299.

    Article  Google Scholar 

  • Straub, C. S. and W. E. Snyder 2006. Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 87:277–282.

    Article  Google Scholar 

  • Symstad, A. J., D. Tilman, J. Willson, and J. M. H. Knops. 1998. Species loss and ecosystem functioning: Effects of species identity and community composition. Oikos 81:389–397.

    Article  Google Scholar 

  • Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie, and E. Siemann. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1301.

    Article  CAS  Google Scholar 

  • United Nations Environmental Program (1998). Environmental effects of ozone depletion: 1998 assessment.

  • Utermöhl, H. 1958. Zur Vervollkommnung der qualitativen Phytoplanktonmethodik. Mitteilungen der Internationalen Vereinigung für Limnologie 9:1–38.

    Google Scholar 

  • Wickham, S. and M. Carstens. 1998. Effects of ultraviolet-B radiation on two arctic microbial food webs. Aquatic Microbial Ecology 16:163–171.

    Article  Google Scholar 

  • Wickham, S., A. Gieseke, and U.-G. Berninger. 2000. Benthic ciliate identification and enumeration: An improved methodology and its application. Aquatic Microbial Ecology 22:79–91.

    Article  Google Scholar 

  • Worm, B. and J. E. Duffy. 2003. Biodiversity, productivity and stability in real food webs. Trends in Ecology and Evolution 18:628–632.

    Article  Google Scholar 

Download references

Acknowledgments

We thank S. Ballmeier, R. Karez, and U. Sommer at the Institute for Marine Sciences in Kiel for helpful discussions, T. Reusch for statistical advice, and the DFG (Deutsche Forschungsgemeinschaft, BE 2279/2) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie D. Moorthi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moorthi, S.D., Hillebrand, H., Wahl, M. et al. Consumer Diversity Enhances Secondary Production by Complementarity Effects in Experimental Ciliate Assemblages. Estuaries and Coasts: J CERF 31, 152–162 (2008). https://doi.org/10.1007/s12237-007-9015-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-007-9015-6

Keywords

Navigation