Skip to main content
Log in

Molecular systematics of southern African monkey orange Strychnos L. (Loganiaceae)

  • Published:
Kew Bulletin Aims and scope Submit manuscript

Summary

Strychnos is the largest genus of the Loganiaceae with about 200 species distributed across Africa (including Madagascar), the Americas, Australia and Asia. Recent molecular phylogenetic effort at elucidating relationships globally provided a useful overview for the genus, based on the internal transcribed spacer (ITS) data. However, an understanding of evolutionary and ecological patterns at regional levels is better served by fine scale phylogenetic analysis to resolve species complexes for conservation and allied reasons. In this study, we use plastid (trnL-trnF, trnS-trnG) and nuclear ribosomal ITS sequence data to infer phylogenetic patterns among members of southern Africa Strychnos. We also evaluate sectional validity of the current classification for African members with ITS sequence data. Our findings support the monophyly of Strychnos, although several of the sections are not monophyletic, thus raising the need for sectional reappraisal of the genus. S. xantha is sister to our expanded representation of southern African taxa, while S. aculeata is sister to all African taxa. The uncertain relationships among S. innocua, S. madagascariensis and S. gerrardii were partly resolved in the phylogenetic analysis of combined datasets. S. innocua is sister to the other two species in a well-supported clade. S. gerrardii and S. madagascariensis are also sister taxa that are not yet reciprocally monophyletic, but possess other features to distinguish them. The trnS-trnG marker revealed a relatively large indel event of potential taxonomic value in section Densiflorae. There is also a clear ecological signal in both the plastid and nuclear datasets, as both consistently placed forest species at the base of the phylogeny, and savanna species in more derived positions. We addressed the adaptive significance of such signals as they relate to fruit and growth forms, and submit proposals towards a comprehensive sectional revision of African Strychnos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adebowale A. (2014). Biosystematic studies in southern African species of Strychnos L. (Loganiaceae). PhD thesis, University of KwaZulu-Natal, Durban.

  • Ajawatanawong, P. & Baldauf, S. L. (2013). Evolution of protein indels in plants, animals and fungi. BMC Evol. Biol. 13: 140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez, I. & Wendel, J. R. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molec. Phylogenet. Evol. 29: 417 – 434.

    Article  CAS  PubMed  Google Scholar 

  • Andersson, L. & Antonelli, A. (2005). Phylogeny of the tribe Cinchoneae (Rubiaceae), its position in Cinchonoideae, and description of a new genus, Ciliosemina. Taxon 54(1): 17 – 28.

    Article  Google Scholar 

  • Backlund, M., Oxelman, B. & Bremer, B. (2000). Phylogenetic relationships within the Gentianales based on ndhF and rbcL sequences, with particular reference to the Loganiaceae. Amer. J. Bot. 87: 1029 – 1043.

    Article  CAS  Google Scholar 

  • Bisset, N. G. (1970). The African species of Strychnos. Part I. The ethnobotany. Lloydia 33: 201 – 243.

    CAS  PubMed  Google Scholar 

  • ____ (1972). Chemical studies on the alkaloids of Asian and African Strychnos species. Lloydia 35: 203 – 206.

    Google Scholar 

  • ____ & Phillipson, J. D. (1971). The African species of Strychnos. Part II. The alkaloids. Lloydia 34: 1 – 60.

    CAS  PubMed  Google Scholar 

  • Britten, R. J., Rowen, L., Williams, J. & Cameron, R. A. (2003). Majority of divergence between closely related DNA samples is due to indels. Proc. Natl. Acad. Sci. USA 100(8): 4661 – 4665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce, E. A. (1955a). Notes on African Strychnos: I. Kew Bull. 10: 35 – 44.

    Article  Google Scholar 

  • ____ (1955b). Notes on African Strychnos: II. Kew Bull. 10: 127 – 129.

    Article  Google Scholar 

  • Chen, C. W., Huang, Y. M., Kuo, L. Y., Nguyen, Q. D., Luu, H. T., Callado, J. R., Farrar, D. R. & Chiou, W. L. (2013). trnL-F is a powerful marker for DNA identification of field vittarioid gametophytes (Pteridaceae). Ann. Bot. 111: 663 – 673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cros, J., Combes, M. C., Trouslot, P., Anthony, F., Hamon, S., Charrier, A. & Lashermes, P. (1998). Phylogenetic analysis of chloroplast DNA variation in Coffea L. Molec. Phylogenet. Evol. 9: 109 – 117.

    Article  CAS  PubMed  Google Scholar 

  • Crouch, J. A., Clarke, B. B. & Hillman, B. I. (2009). What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored graminicolous Colletotrichum group. Mycologia 101(5): 648 – 656.

    Article  PubMed  Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9: 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davalos, L. M., Cirranello, A. L., Geisler, J. H. & Simmons, N. B. (2012). Understanding phylogenetic incongruence: lessons from phyllostomid bats. Biol. Rev. 87: 991 – 1024.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duvigneaud, P. (1947). Le groupe de Strychnos malaclados en Afrique equitoriale. Lejeunia 11: 55 – 80.

    Google Scholar 

  • ____ (1952). Aperçu sur les sections Africaines du genre Strychnos (Loganiaceae). Bull. Soc. Roy. Bot. Belgique 85: 9 – 37.

    Google Scholar 

  • ____, Staquet, J. & Dewit, J. (1952). Contribution à l'etude anatomique des rameaux chez les sections africaines du genre Strychnos. Bull. Soc. Roy. Bot. Belgique 85: 39 – 67.

    Google Scholar 

  • Eddy, S. (1998). Profile hidden Markov models. Bioinformatics 14: 755 – 763.

    Article  CAS  PubMed  Google Scholar 

  • Farris, J. S., Kallersjo, M., Kluge, A. G. & Bult, C. (1995). Constructing a significance test for incongruence. Syst. Biol. 44: 570 – 572.

    Article  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783 – 791.

    Article  Google Scholar 

  • Frasier, L. C. (2008). Evolution and systematics of the angiosperm order Gentianales with an in-depth focus on Loganiaceae and its species-rich and toxic genus Strychnos. PhD Dissertation, Rutgers, The State University of New Jersey.

  • Garcia-Lor, A., Curk, F., Snoussi-Trifa, H., Morillon, R., Ancillo, G., Luro, F., Navarro, L. & Ollitrault, P. (2013). A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species. Ann. Bot. 111: 1 – 19.

    Article  CAS  PubMed  Google Scholar 

  • Gashaw, M., Michelsen, A., Jensen, F. M., Demissew, S. & Woldu, Z. (2002). Post-fire regeneration strategies and tree bark resistance to heating in frequently burning tropical savanna woodlands and grasslands in Ethiopia. Nord. J. Bot. 22: 19 – 33.

    Article  Google Scholar 

  • Graham, S. W., Reeves, P. A., Burns, A. C. E. & Olmstead, R. G. (2000). Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. Int. J. Pl. Sci. 161(6 Suppl.): S83 – S96.

    Article  CAS  Google Scholar 

  • Guindon, S. & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696 – 704.

    Article  PubMed  Google Scholar 

  • Guo, B., Zou, M. & Wagner, A. (2012). Pervasive indels and their evolutionary dynamics after the fish-specific genome Duplication. Molec. Biol. Evol. 29(10): 3005 – 3022.

    Article  CAS  PubMed  Google Scholar 

  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid S. 41: 95 – 98.

    CAS  Google Scholar 

  • Hilu, K. W. & Alice, L. A. (1999). Evolutionary implications of matK indels in Poaceae. Amer. J. Bot. 86: 1735 – 1741.

    Article  CAS  Google Scholar 

  • Huft, M. J. (1988). A new species of Strychnos (Loganiaceae) from Nicaragua Ann. Missouri Bot. Gard. 75(1): 383 – 384.

    Article  Google Scholar 

  • Inkscape v 0.48. www.inkscape.org.

  • Kelchner, S. A. & Clark, L. G. (1997). Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Molec. Phylogenet. Evol. 8: 385 – 397.

    Article  CAS  PubMed  Google Scholar 

  • Koetschan, C., Hackl, T., Müller, T., Wolf, M., Förster, F. & Schultz, J. (2012). ITS2 Database IV: Interactive taxon sampling for internal transcribed spacer 2 based phylogenies. Molec. Phylogenet. Evol. 63: 585 – 588.

    Article  CAS  PubMed  Google Scholar 

  • Krukoff, B. A. (1972). American species of Strychnos. Lloydia 35: 193 – 271.

    CAS  PubMed  Google Scholar 

  • ____ & Monachino, J. (1942). The American species of Strychnos. Brittonia 2: 248 – 322.

    Article  Google Scholar 

  • Leeuwenberg, A. J. M. (1969). The Loganiaceae of Africa VIII. Strychnos III: Revision of the African species with notes on the extra-African. Meded Landbouwhogeschool Wageningen 69: 1 – 316.

    Google Scholar 

  • ____ & Leenhouts, P. W. (1980). Taxonomy. In: A. J. M. Leeuwenberg (ed.), Engler and Prantl's Die naturlichen pflanzenfamilien, Angiospermae: ordnung Gentianales fam Loganiaceae, pp. 8 – 96. Duncker & Humboldt, Berlin.

    Google Scholar 

  • Liu, J., Provan, J., Gao, L.-M. & Li, D.-Z. (2012). Sampling strategy and potential utility of indels for DNA barcoding of closely related plant species: a case study in Taxus. Int. J. Molec. Sci. 13: 8740 – 8751.

    Article  CAS  Google Scholar 

  • Manoel, E. A., Carrijo, T. T. & Guimarães, E. F. (2012). A new tree species of Strychnos Sect. Longiflorae (Loganiaceae). Syst. Bot. 37(1): 254 – 257.

    Article  Google Scholar 

  • ____ & Guimarães, E. F. (2011). Strychnos jacarepiensis, a new species of Loganiaceae from Brazil. Kew Bull. 66: 295 – 298.

    Article  Google Scholar 

  • Maurin, O., Davis, A. P., Chester, M., Mvungi, E. F., Jaufeerally-Fakim, Y. & Fay, M. F. (2007). Towards a phylogeny for Coffea (Rubiaceae): identifying well-supported lineages based on nuclear and plastid DNA sequences. Ann. Bot. 100: 1565 – 1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPherson, G. (2011). Strychnos puberula (Loganiaceae), a new species from Panama. Novon 21(4): 472 – 474.

    Article  Google Scholar 

  • Müller, K. (2005). SeqState — primer design and sequence statistics for phylogenetic DNA data sets. Appl. Bioinformatics 4: 65 – 69.

    Article  PubMed  Google Scholar 

  • Murillo-A, J., Stuessy, T. F. & Ruiz, E. (2013). Phylogenetic relationships among Myrceugenia, Blepharocalyx, and Luma (Myrtaceae) based on paired-sites models and the secondary structures of ITS and ETS sequences. Pl. Syst. Evol. 299: 713 – 729.

    Article  Google Scholar 

  • Pelser, P. B., Kennedy, A. H., Tepe, E. J., Shidler, J. B., Nordenstam, B., Kadereit, J. W. & Watson, L. E. (2010). Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. Amer. J. Bot. 97(5): 856 – 873.

    Article  CAS  Google Scholar 

  • Perret, M., Chautems, A., Spichiger, R., Kite, G. & Savolainen, V. (2003). Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analysis of six plastid DNA regions and nuclear ncpGS. Amer. J. Bot. 90: 445 – 460.

    Article  CAS  Google Scholar 

  • Philippe, G., Angenot, L., Tits, M. & Frederich, M. (2004). About the toxicity of some Strychnos species and their alkaloids. Toxicon 44: 405 – 416.

    Article  CAS  PubMed  Google Scholar 

  • Rambaut, A. (2006). FigTree v1.3.1. http://tree.bio.ed.ac.uk/software/figtree.

  • ____ & Drummond, A. J. (2009). Tracer v1.5. http://tree.bio.ed.ac.uk/software/tracer.

  • Rokas, A., Williams, B. L., King, N. & Carroll, S. B. (2003). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798 – 804.

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61(3): 539 – 542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rybalka, N., Wolf, M., Andersen, R. A. & Friedl, T. (2013). Congruence of chloroplast- and nuclear-encoded DNA sequence variations used to assess species boundaries in the soil microalga Heterococcus (Stramenopiles, Xanthophyceae). BMC Evol. Biol. 13: 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandberg, F., Lunell, E. & Ryrberg, K. J. (1969). Pharmacological and phytochemical investigations of African Strychnos species. Acta Pharm. Suec. 6: 79 – 102.

    CAS  PubMed  Google Scholar 

  • Sanderson, M. J. (1997). A nonparametric approach to estimating divergence times in the absence of rate constancy. Molec. Biol. Evol. 14: 1218 – 1231.

    Article  CAS  Google Scholar 

  • ____ (2002). Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molec. Biol. Evol. 19: 101 – 109.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, J., Muller, T., Achtziger, M., Seibel, P. N., Dandekar, T. & Wolf, M. (2006). The internal transcribed spacer 2 database — a web server for (not only) low level phylogenetic analyses. Nucleic Acids Res. 34: W704 – W707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seelanan, T., Schnabel, A. & Wendel, J. F. (1997). Congruence and consensus in the cotton tribe (Malvaceae). Syst. Bot. 22: 259 – 290.

    Article  Google Scholar 

  • Seibel, P. N., Müller, T., Dandekar, T., Schultz, J. & Wolf, M. (2006). 4SALE — A tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 7: 498.

    Article  PubMed  PubMed Central  Google Scholar 

  • ____, ____, ____ & Wolf, M. (2008). Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Res. Notes 1: 91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw, J., Lickey, E., Beck, J. T., Farmer, S. B., Liu, W., Miller, J., Siripun, K. C., Winder, C. T., Schilling, E. E. & Small, R. L. (2005). The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Amer. J. Bot. 92: 142 – 166.

    Article  CAS  Google Scholar 

  • ____, ____, Schilling, E. E. & Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer. J. Bot. 94: 275 – 288.

    Article  CAS  Google Scholar 

  • Shoko, T., Apostolides, Z., Monjerezi, M. & Saka, J. D. K. (2013). Volatile constituents of fruit pulp of Strychnos cocculoides (Baker) growing in Malawi using solid phase microextraction. S. African J. Bot. 84: 11 – 12.

    Article  CAS  Google Scholar 

  • Simmons, M. & Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analysis. Syst. Biol. 49: 369 – 381.

    Article  CAS  PubMed  Google Scholar 

  • Struwe, L., Albert, V. A. & Bremer, B. (1994). Cladistics and family level classification of the Gentianales. Cladistics 10: 175 – 206.

    Article  Google Scholar 

  • Swofford, D. L. (2002). PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland MA.

  • Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molec. Biol. 17: 1105 – 1109.

    Article  CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec. Biol. Evol. 28: 2731 – 2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchinda, A. T., Tamze, V., Ngono, A. R. N., Ayimele, G. A., Cao, M., Angenot, L. & Frédérich, M. (2012). Alkaloids from the stem bark of Strychnos icaja. Phytochem. Lett. 5: 108 – 113.

    Article  CAS  Google Scholar 

  • Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). Clustal W: improving the sensitivity of progressive sequence alignment through progressive sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673 – 4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdoorn, I. C. (1963). Loganiaceae. In: R. A. Dyer, L. E. Codd & H. B. Rycroft (eds), Flora of southern Africa 26: 134 – 149. Dept. of Technical Services, Pretoria.

  • Wendel, J. F. & Doyle, J. A. (1998). Phylogenetic incongruence: window into genome history and molecular evolution. In: P. S. Soltis & J. Doyle (eds), Molecular Systematics of Plants II: DNA Sequencing, pp. 265 – 296. Chapman and Hall, New York.

    Chapter  Google Scholar 

  • White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribososmal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White (eds), PCR Protocols, pp. 315 – 324. Academic Press, San Diego.

    Google Scholar 

  • Wolf, M., Achtziger, M., Schultz, J., Dandekar, T. & Muller, T. (2005). Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA. 11: 1616 – 1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, X. (2013). DAMBE5: A comprehensive software package for data analysis in molecular biology and evolution. Molec. Biol. Evol. 30: 1720 – 1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane, K., Yano, K. & Kawahara, T. (2006). Pattern and rate of indel evolution inferred from whole chloroplast intergenic regions in sugarcane, maize and rice. DNA Res. 13: 197 – 204.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adekunle Adebowale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adebowale, A., Lamb, J., Nicholas, A. et al. Molecular systematics of southern African monkey orange Strychnos L. (Loganiaceae). Kew Bull 71, 17 (2016). https://doi.org/10.1007/s12225-016-9630-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12225-016-9630-0

Key Words

Navigation