Skip to main content
Log in

An Almost Complex Chern–Ricci Flow

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We consider the evolution of an almost Hermitian metric by the (1, 1) part of its Chern–Ricci form on almost complex manifolds. This is an evolution equation first studied by Chu and coincides with the Chern–Ricci flow if the complex structure is integrable and with the Kähler–Ricci flow if moreover the initial metric is Kähler. We find the maximal existence time for the flow in term of the initial data and also give some convergence results. As an example, we study this flow on the (locally) homogeneous manifolds in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angella, D.: Cohomological Aspects in Complex Non-Kähler Geometry. Lecture Notes in Mathematics, vol. 2095. Springer, Cham (2014)

    MATH  Google Scholar 

  2. Brendle, S., Schoen, R.M.: Classification of manifolds with weakly 1/4-pinched curvatures. Acta Math. 200(1), 1–13 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, H.-D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, X., Sun, S., Wang, B.: Kähler–Ricci Flow, Kähler–Einstein Metric, and \(K\)-Stability. arXiv:1508.04397

  5. Chen, X., Wang, B.: Kähler–Ricci flow on Fano manifolds (I). J. Eur. Math. Soc. 14(6), 2001–2038 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chern, S.-S.: Characteristic classes of Hermitian manifolds. Ann. Math. 47, 85–121 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cherrier, P.: Équations de Monge–Ampère sur les variétés Hermitiennes compactes. Bull. Sci. Math. 111, 343–385 (1987)

    MathSciNet  MATH  Google Scholar 

  8. Chu, J.: \(C^{2,\alpha }\) regularities and estimates for nonlinear elliptic and parabolic equations in geometry. Calc. Var. Partial Differ. Equ. 55(1), 1–20 (2016)

    Article  MathSciNet  Google Scholar 

  9. Chu, J.: The Parabolic Monge–Ampère Equation on Compact Almost Hermitian Manifolds. arXiv:1607.02608 (2016)

  10. Chu, J., Tosatti, V., Weinkove, B. The Monge–Ampère Equation for Non-integrable Almost Complex Structures. arXiv:1603.00706 (2016)

  11. Ehresmann, C., Libermann, P.: Sur les structures presque hermitiennes isotopes. C. R. Acad. Sci. Paris 232, 1281–1283 (1951)

    MathSciNet  MATH  Google Scholar 

  12. Fang, S., Tosatti, V., Weinkove, B., Zheng, T.: Inoue surfaces and the Chern-Ricci flow. J. Funct. Anal. 271(11), 3162–3185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feldman, M., Ilmanen, T., Knopf, D.: Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons. J. Differ. Geom. 65(2), 169–209 (2003)

    Article  MATH  Google Scholar 

  14. Gauduchon, P.: Hermitian connection and Dirac operators. Boll. Unione Mat. Ital. B 11, 257–288 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Gill, M.: Convergence of the parabolic complex Monge–Ampère equation on compact Hermitian manifolds. Commun. Anal. Geom. 19(2), 277–303 (2011)

    Article  MATH  Google Scholar 

  16. Gill, M.: The Chern–Ricci Flow on Smooth Minimal Models of General Type arXiv:1307.0066

  17. Gill, M., Smith, D.: The behavior of Chern scalar curvature under Chern–Ricci flow. Proc. Am. Math. Soc. 143(11), 4875–4883 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hamilton, R.S.: The Formation of Singularities in the Ricci Flow, Surveys in Differential Geometry, Vol. II (Cambridge, MA, 1993), pp. 7–136. International Press, Cambridge (1995)

    Google Scholar 

  20. Kobayashi, S.: Natural connections in almost complex manifolds. Contemp. Math. 332, 153–170 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. Wiley Interscience, New York (1969)

    MATH  Google Scholar 

  22. Lauret, J.: Curvature flows for almost-hermitian Lie groups. Trans. Am. Math. Soc. 367, 7453–7480 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lauret, J., Rodríguez-Valencia, E.: On the Chern–Ricci flow and its solitons for Lie groups. Math. Nachr. 288(13), 1512–1526 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, K., Yang, X.: Geometry of Hermitian manifolds. Int. J. Math. 23(6), 1250055,40 (2012)

    Article  MathSciNet  Google Scholar 

  25. Nie, X.: Weak Solutions of the Chern–Ricci Flow on Compact Complex Surfaces arXiv:1701.04965

  26. Perelman, G.: The Entropy Formula for the Ricci Flow and Its Geometric Applications. Preprint, arXiv:math/0211159

  27. Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Kähler–Ricci flow and the \(\bar{\partial }\) operator on vector fields. J. Differ. Geom. 81(3), 631–647 (2009)

    Article  MATH  Google Scholar 

  28. Phong, D.H., Sturm, J.: On stability and the convergence of the Kähler–Ricci flow. J. Differ. Geom. 72(1), 149–168 (2006)

    Article  MATH  Google Scholar 

  29. Pook, J.: Homogeneous and Locally Homogeneous Solutions to Symplectic Curvature Flow. arXiv:1202.1427

  30. Schouten, J.A., van Danzig, D.: Über unitäre Geometrie. Math. Ann. 103, 319–346 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  31. Song, J., Tian, G.: The Kähler–Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170(3), 609–653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Song, J., Tian, G.: Canonical measures and Kähler–Ricci flow. J. Am. Math. Soc. 25(2), 303–353 (2012)

    Article  MATH  Google Scholar 

  33. Song, J., Tian, G.: The Kähler–Ricci flow through singularities. Invent. Math. 207(2), 519–595 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Song, J., Weinkove, B.: The Kähler–Ricci flow on Hirzebruch surfaces. J. Reine Angew. Math. 659, 141–168 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Song, J., Weinkove, B.: Contracting exceptional divisors by the Kähler–Ricci flow. Duke Math. J. 162(2), 367–415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Song, J., Weinkove, B.: Contracting exceptional divisors by the Kähler–Ricci flow, II. Proc. Lond. Math. Soc. 108(6), 1529–1561 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Song, J., Weinkove, B.: An Introduction to the Kähler–Ricci Flow. Lecture Notes in Mathematics, 2086. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  38. Song, J., Yuan, Y.: Metric flips with Calabi ansatz. Geom. Funct. Anal. 22(1), 240–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. 2010(16), 3101–3133 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Streets, J., Tian, G.: Hermitian curvature flow. J. Eur. Math. Soc. 13(3), 601–634 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Streets, J., Tian, G.: Regularity results for pluriclosed flow. Geom. Topol. 17(4), 2389–2429 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Székelyhidi, G.: The Kähler–Ricci flow and K-stability. Am. J. Math. 132(4), 1077–1090 (2010)

    Article  MATH  Google Scholar 

  43. Székelyhidi, G.: Fully Non-linear Elliptic Equations on Compact Hermitian Manifolds. arXiv:1501.02762v2

  44. Székelyhidi, G., Tosatti, V., Weinkove, B.: Gauduchon Metrics with Prescribed Volume Form. arXiv:1503.04491

  45. Tian, G.: New Results And Problems on Kähler–Ricci Flow. Astérisque No. 322, pp. 71–92 (2008)

  46. Tian, G., Zhang, Z.: On the Kähler–Ricci flow on projective manifolds of general type. Chin. Ann. Math. Ser. B 27(2), 179–192 (2006)

    Article  MATH  Google Scholar 

  47. Tosatti, V.: A general Schwarz lemma for almost-Hermitian manifolds. Commun. Anal. Geom. 15(5), 1063–1086 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tosatti, V.: Kähler–Ricci flow on stable Fano manifolds. J. Reine Angew. Math. 640, 67–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tosatti, V.: KAWA Lecture Notes on the Kähler–Ricci Flow. arXiv:1508.04823

  50. Tosatti, V., Wang, Y., Weinkove, B., Yang, X.: \(C^{2,\alpha }\) estimates for nonlinear elliptic equations in complex and almost complex geometry. Calc. Var. Partial Differ. Equ. 54(1), 431–453 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tosatti, V., Weinkove, B.: Estimates for the complex Monge–Ampère equation on Hermitian and balanced manifolds. Asian J. Math. 14(1), 19–40 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tosatti, V., Weinkove, B.: The complex Monge–Ampère equation on compact Hermitian manifolds. J. Am. Math. Soc. 23(4), 1187–1195 (2010)

    Article  MATH  Google Scholar 

  53. Tosatti, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern–Ricci form. J. Differ. Geom. 99(1), 125–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tosatti, V., Weinkove, B.: The Chern–Ricci flow on complex surfaces. Compos. Math. 149(12), 2101–2138 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tosatti, V., Weinkove, B., Yang, X.: Collapsing of the Chern–Ricci flow on elliptic surfaces. Math. Ann. 362(3–4), 1223–1271 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tosatti, V., Weinkove, B., Yau, S.-T.: Taming symplectic forms and the Calabi–Yau equation. Proc. Lond. Math. Soc. 97(3), 401–424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tsuji, H.: Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281(1), 123–133 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tsuji, H.: Generalized Bergmann Metrics and Invariance of Plurigenera. Preprint, arXiv:math/9604228

  59. Vezzoni, L.: On Hermitian curvature flow on almost complex manifolds. Differ. Geom. Appl. 29(5), 709–722 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Vezzoni, L.: A note on canonical Ricci form on \(2\)-step nilmanifolds. Proc. Am. Math. Soc. 141, 325–333 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Weinkove, B.: The Kähler–Ricci Flow on Compact Kähler Manifolds. Lecture Notes for Park City Mathematics Institute (2014)

  62. Yang, X.: The Chern–Ricci flow and holomorphic bisectional curvature. Sci. China Math. 59(11), 2199–2204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

  64. Zheng, T.: The Chern–Ricci flow on Oeljeklaus–Toma manifolds. Can. J. Math. 69(1), 220–240 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Professor Valentino Tosatti for suggesting him this question and for many other invaluable conversations and directions. The author also thanks Professor Jean-Pierre Demailly and Professor Ben Weinkove for some useful comments. The author is also grateful to the anonymous referees and the editor for their careful reading and helpful suggestions which greatly improved the paper. This study is supported by the National Natural Science Foundation of China Grant No. 11401023, and the author’s post-doc is supported by the European Research Council (ERC) Grant No. 670846 (ALKAGE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, T. An Almost Complex Chern–Ricci Flow. J Geom Anal 28, 2129–2165 (2018). https://doi.org/10.1007/s12220-017-9898-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9898-9

Keywords

Mathematics Subject Classification

Navigation