Skip to main content
Log in

Laser-based micro/nanofabrication in one, two and three dimensions

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Advanced micro/nanofabrication of functional materials and structures with various dimensions represents a key research topic in modern nanoscience and technology and becomes critically important for numerous emerging technologies such as nanoelectronics, nanophotonics and micro/nanoelectromechanical systems. This review systematically explores the non-conventional material processing approaches in fabricating nanomaterials and micro/nanostructures of various dimensions which are challenging to be fabricated via conventional approaches. Research efforts are focused on laser-based techniques for the growth and fabrication of one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) nanomaterials and micro/nanostructures. The following research topics are covered, including: 1) laser-assisted chemical vapor deposition (CVD) for highly efficient growth and integration of 1D nanomaterial of carbon nanotubes (CNTs), 2) laser direct writing (LDW) of graphene ribbons under ambient conditions, and 3) LDW of 3D micro/nanostructures via additive and subtractive processes. Comparing with the conventional fabrication methods, the laser-based methods exhibit several unique advantages in the micro/nanofabrication of advanced functional materials and structures. For the 1D CNT growth, the laser-assisted CVD process can realize both rapid material synthesis and tight control of growth location and orientation of CNTs due to the highly intense energy delivery and laser-induced optical near-field effects. For the 2D graphene synthesis and patterning, room-temperature and open-air fabrication of large-scale graphene patterns on dielectric surface has been successfully realized by a LDW process. For the 3D micro/nanofabrication, the combination of additive two-photon polymerization (TPP) and subtractive multi-photon ablation (MPA) processes enables the fabrication of arbitrary complex 3D micro/nanostructures which are challenging for conventional fabrication methods. Considering the numerous unique advantages of laser-based techniques, the laser-based micro/nanofabrication is expected to play a more and more important role in the fabrication of advanced functional micro/nano-devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiederrecht G. Handbook of Nanofabrication. Boston, MA: Elsevier, 2009

    Google Scholar 

  2. Quake S R, Scherer A. From micro- to nanofabrication with soft materials. Science, 2000, 290(5496): 1536–1540

    Article  Google Scholar 

  3. Henzie J, Lee J, Lee M H, Hasan W, Odom T W. Nanofabrication of plasmonic structures. Annual Review of Physical Chemistry, 2009, 60(1): 147–165

    Article  Google Scholar 

  4. Zhang G Q, van Roosmalen A J. The changing landscape of micro/nanoelectronics. In: More than Moore: Creating High Value Micro/Nanoelectronics Systems. New York: Springer US, 2009, 1–31

    Chapter  Google Scholar 

  5. Zhang G Q, VanRoosmalen A J. More than Moore: Creating High Value Micro/Nanoelectronics Systems. New York: Springer US, 2009

    Book  Google Scholar 

  6. Liang J, Chen Y, Xu Y, Liu Z, Zhang L, Zhao X, Zhang X, Tian J, Huang Y, Ma Y, Li F. Toward all-carbon electronics: fabrication of graphene-based flexible electronic circuits and memory cards using maskless laser direct writing. ACS Applied Materials & Interfaces, 2010, 2(11): 3310–3317

    Article  Google Scholar 

  7. Meixner A J. Nanophotonics, nano-optics and nanospectroscopy. Beilstein Journal of Nanotechnology, 2011, 2: 499–500

    Article  Google Scholar 

  8. Vasa P, Ropers C, Pomraenke R, Lienau C. Ultra-fast nano-optics. Laser & Photonics Reviews. 2009, 3(6): 483–507

    Article  Google Scholar 

  9. Stockman M. Light-emitting devices: from nano-optics to street lights. Nature Materials, 2004, 3(7): 423–424

    Article  Google Scholar 

  10. Koch S W, Knorr A. Applied physics. Optics in the nano-world. Science, 2001, 293(5538): 2217–2218

    Article  Google Scholar 

  11. Fara L, Yamaguchi M. Advanced Solar Cell Materials, Technology, Modeling and Simulation. Hershey, PA: Engineering Science Reference, 2013

    Book  Google Scholar 

  12. Rau U, Abou-Ras D, Kirchartz T. Advanced Characterization Techniques for Thin Film Solar Cells. Weinheim, Germany: Wiley-VCH, 2011

    Google Scholar 

  13. Zaghloul U, Papaioannou G, Bhushan B, Coccetti F, Pons P, Plana R. On the reliability of electrostatic NEMS/MEMS devices: review of present knowledge on the dielectric charging and stiction failure mechanisms and novel characterization methodologies. Microelectronics and Reliability, 2011, 51(9–11): 1810–1818

    Article  Google Scholar 

  14. Roncaglia A, Ferri M. Thermoelectric materials in MEMS and NEMS: a review. Science of Advanced Materials, 2011, 3(3): 401–419

    Article  Google Scholar 

  15. Kumar S, Cola B A, Jackson R, Graham S. A review of carbon nanotube ensembles as flexible electronics and advanced packaging materials. Journal of Electronic Packaging, 2011, 133(2): 020906

    Article  Google Scholar 

  16. Palacios T. Graphene electronics: thinking outside the silicon box. Nature Nanotechnology, 2011, 6(8): 464–465

    Article  Google Scholar 

  17. Sinitskii A, Tour J M. Graphene electronics, unzipped. IEEE Spectrum, 2010, 47(11): 28–33

    Article  Google Scholar 

  18. Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

    Article  Google Scholar 

  19. Danilevičius P, Rekstyte S, Balciunas E, Kraniauskas A, Širmenis R, Baltriukienė D, Bukelskienė V, Gadonas R, Sirvydis V, Piskarskas A, Malinauskas M. Laser 3D micro/nanofabrication of polymers for tissue engineering applications. Optics & Laser Technology, 2013, 45: 518–524

    Article  Google Scholar 

  20. Zhang Y L, Chen Q D, Xia H, Sun H B. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448

    Article  Google Scholar 

  21. Porro S, Musso S, Giorcelli M, Chiodoni A, Tagliaferro A. Optimization of a thermal-CVD system for carbon nanotube growth. Physica E, Low-Dimensional Systems and Nanostructures, 2007, 37(1–2): 16–20

    Article  Google Scholar 

  22. Shi F, Wang Y, Xue C. Synthesis of GaN nanowires by CVD method: effect of reaction temperature. Journal of Experimental Nanoscience, 2011, 6(3): 238–247

    Article  Google Scholar 

  23. Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5(8): 574–578

    Article  Google Scholar 

  24. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30–35

    Article  Google Scholar 

  25. Hong J, Jang J. Micropatterning of graphene sheets: recent advances in techniques and applications. Journal of Materials Chemistry, 2012, 22(17): 8179–8191

    Article  Google Scholar 

  26. Xiong W, Zhou Y S, He X N, Gao Y, Mahjouri-Samani M, Jiang L, Baldacchini T, Lu Y F. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Science & Applications, 2012, 1(4): e6

    Article  Google Scholar 

  27. Shi J, Lu Y F, Wang H, Yi K J, Lin Y S, Zhang R, Liou S H. Synthesis of suspended carbon nanotubes on silicon inverse-opal structures by laser-assisted chemical vapour deposition. Nanotechnology, 2006, 17(15): 3822–3826

    Article  Google Scholar 

  28. Xie Z, Zhou Y, He X, Gao Y, Park J, Ling H, Jiang L, Lu Y. Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling. Crystal Growth & Design, 2010, 10(4): 1762–1766

    Article  Google Scholar 

  29. Park J B, Jeong MS, Jeong S H. Direct writing of carbon nanotube patterns by laser-induced chemical vapor deposition on a transparent substrate. Applied Surface Science, 2009, 255(8): 4526–4530

    Article  Google Scholar 

  30. Xiong W, Zhou Y S, Mahjouri-Samani M, Yang WQ, Yi K J, He X N, Liou S H, Lu Y F. Self-aligned growth of single-walled carbon nanotubes using optical near-field effects. Nanotechnology, 2009, 20(2): 025601

    Article  Google Scholar 

  31. Odom T W, Huang J, Kim P, Lieber C M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391(6662): 62–64

    Article  Google Scholar 

  32. Burghard M, Klauk H, Kern K. Carbon-based field-effect transistors for nanoelectronics. Advanced Materials, 2009, 21(25–26): 2586–2600

    Article  Google Scholar 

  33. Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science, 2001, 294(5545): 1317–1320

    Article  Google Scholar 

  34. Dai H. Carbon nanotubes: opportunities and challenges. Surface Science, 2002, 500(1–3): 218–241

    Article  Google Scholar 

  35. Avouris P, Chen J. Nanotube electronics and optoelectronics. Materials Today, 2006, 9(10): 46–54

    Article  Google Scholar 

  36. Kong J, Soh H T, Cassell A M, Quate C F, Dai H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998, 395(6705): 878–881

    Article  Google Scholar 

  37. Li Y, Mann D, Rolandi M, Kim W, Ural A, Hung S, Javey A, Cao J, Wang D, Yenilmez E, Wang Q, Gibbons J F, Nishi Y, Dai H. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Letters, 2004, 4(2): 317–321

    Article  Google Scholar 

  38. Shi J, Lu Y F, Yi K J, Lin Y S, Liou S H, Hou J B, Wang X W. Direct synthesis of single-walled carbon nanotubes bridging metal electrodes by laser-assisted chemical vapor deposition. Applied Physics Letters, 2006, 89(8): 083105

    Article  Google Scholar 

  39. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274): 483–487

    Article  Google Scholar 

  40. Bethune D S, Kiang C H, de Vries M S, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature, 1993, 363(6430): 605–607

    Article  Google Scholar 

  41. Kim P, Shi L, Majumdar A, McEuen P L. Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physica B, Condensed Matter, 2002, 323(1–4): 67–70

    Article  Google Scholar 

  42. Ural A, Li Y, Dai H. Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Applied Physics Letters, 2002, 81(18): 3464–3466

    Article  Google Scholar 

  43. Falvo M R, Clary G J, Taylor R M 2nd, Chi V, Brooks F P Jr, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389(6651): 582–584

    Article  Google Scholar 

  44. Vijayaraghavan A, Blatt S, Weissenberger D, Oron-Carl M, Hennrich F, Gerthsen D, Hahn H, Krupke R. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Letters, 2007, 7(6): 1556–1560

    Article  Google Scholar 

  45. Rao S G, Huang L, Setyawan W, Hong S. Nanotube electronics: large-scale assembly of carbon nanotubes. Nature, 2003, 425(6953): 36–37

    Article  Google Scholar 

  46. Zhang Y, Chang A, Cao J, Wang Q, Kim W, Li Y, Morris N, Yenilmez E, Kong J, Dai H. Electric-field-directed growth of aligned single-walled carbon nanotubes. Applied Physics Letters, 2001, 79(19): 3155–3157

    Article  Google Scholar 

  47. Huang S, Cai X, Liu J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. Journal of the American Chemical Society, 2003, 125(19): 5636–5637

    Article  Google Scholar 

  48. Tans S J, Devoret MH, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386(6624): 474–477

    Article  Google Scholar 

  49. Xi N, Szu H, Buss J, Mack I. Carbon nanotube based spectrum infrared detectors. In: Proceedings of SPIE 5987, Electro-Optical and Infrared Systems: Technology and Applications II. 2005, 59870M

    Chapter  Google Scholar 

  50. Bockrath M, Cobden D H, McEuen P L, Chopra N G, Zettl A, Thess A, Smalley R E. Single-electron transport in ropes of carbon nanotubes. Science, 1997, 275(5308): 1922–1925

    Article  Google Scholar 

  51. Maehashi K, Ohno Y, Inoue K, Matsumoto K. Laser-resonance chirality selection in single-walled carbon nanotubes. AIP Conference Proceedings, 2005, 772(1): 1023–1024

    Article  Google Scholar 

  52. Xiong W, Gao Y, Mahjouri-Samani M, Zhou Y S, Mitchell M, J B Park, Lu Y F. Laser assisted fabrication for controlled singlewalled carbon nanotube synthesis and processing. Chinese Journal of Lasers, 2009, 36(12): 3125–3132

    Article  Google Scholar 

  53. Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S. Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chemical Physics Letters, 2003, 376(1–2): 174–180

    Article  Google Scholar 

  54. Novotny L, Bian R X, Xie X S. Theory of nanometric optical tweezers. Physical Review Letters, 1997, 79(4): 645–648

    Article  Google Scholar 

  55. Downes A, Salter D, Elfick A. Heating effects in tip-enhanced optical microscopy. Optics Express, 2006, 14(12): 5216–5222

    Article  Google Scholar 

  56. Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu Y T, Liu Z. Temperaturemediated growth of single-walled carbon-nanotube intramolecular junctions. Nature Materials, 2007, 6(4): 283–286

    Article  MATH  Google Scholar 

  57. Zhou Y S, Xiong W, Gao Y, Mahjouri-Samani M, Mitchell M, Jiang L, Lu Y F. Towards carbon-nanotube integrated devices: optically controlled parallel integration of single-walled carbon nanotubes. Nanotechnology, 2010, 21(31): 315601

    Article  Google Scholar 

  58. Xiong W, Zhou Y S, Mahjouri-Samani M, Yang WQ, Yi K J, He X N, Lu Y F. Controlled-growth of single-walled carbon nanotubes using optical near-field effects. In: Proceedings of SPIE 7202, Laser-based Micro- and Nanopackaging and Assembly III. 2009, 720209

    Chapter  Google Scholar 

  59. Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari A C, Blackburn A M, Wang K Y, Robertson J. Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Letters, 2006, 6(6): 1107–1112

    Article  Google Scholar 

  60. van Dorp W F, Hagen C W. A critical literature review of focused electron beam induced deposition. Journal of Applied Physics, 2008, 104(8): 081301

    Article  Google Scholar 

  61. Brintlinger T, Chen Y, Dürkop T, Cobas E, Fuhrer M S, Barry J D, Melngailis J. Rapid imaging of nanotubes on insulating substrates. Applied Physics Letters, 2002, 81(13): 2454–2456

    Article  Google Scholar 

  62. Zhou Y S, Yi K J, Mahjouri-Samani M, Xiong W, Lu Y F, Liou S H. Image contrast enhancement in field-emission scanning electron microscopy of single-walled carbon nanotubes. Applied Surface Science, 2009, 255(7): 4341–4346

    Article  Google Scholar 

  63. Homma Y, Suzuki S, Kobayashi Y, Nagase M, Takagi D. Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy. Applied Physics Letters, 2004, 84(10): 1750–1752

    Article  Google Scholar 

  64. Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

    Article  Google Scholar 

  65. Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Room-temperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379

    Article  Google Scholar 

  66. Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388

    Article  Google Scholar 

  67. Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L. Two-dimensional phonon transport in supported graphene. Science, 2010, 328(5975): 213–216

    Article  Google Scholar 

  68. Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332(6035): 1291–1294

    Article  Google Scholar 

  69. Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres NMR, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308

    Article  Google Scholar 

  70. Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D. Graphene-on-silicon Schottky junction solar cells. Advanced materials (Deerfield Beach, Fla.), 2010, 22(25): 2743–2748

    Article  Google Scholar 

  71. Park H, Rowehl J A, Kim K K, Bulovic V, Kong J. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21(50): 505204

    Article  Google Scholar 

  72. Feng L, Wu L, Wang J, Ren J, Miyoshi D, Sugimoto N, Qu X. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Advanced materials (Deerfield Beach, Fla.), 2012, 24(1): 125–131

    Article  Google Scholar 

  73. Myung S, Solanki A, Kim C, Park J, Kim K S, Lee K. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Advanced materials (Deerfield Beach, Fla.), 2011, 23(19): 2221–2225

    Article  Google Scholar 

  74. Hwang J O, Park J S, Choi D S, Kim J Y, Lee S H, Lee K E, Kim Y H, Song M H, Yoo S, Kim S O. Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes. ACS Nano, 2012, 6(1): 159–167

    Article  Google Scholar 

  75. Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced materials (Deerfield Beach, Fla.), 2011, 23(13): 1482–1513

    Article  Google Scholar 

  76. Kalita G, Matsushima M, Uchida H, Wakita K, Umeno M. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. Journal of Materials Chemistry, 2010, 20(43): 9713–9717

    Article  Google Scholar 

  77. Xiong W, Zhou Y S, Jiang L J, Sarkar A, Mahjouri-Samani M, Xie Z Q, Gao Y, Ianno N J, Jiang L, Lu Y F. Single-step formation of graphene on dielectric surfaces. Advanced materials (Deerfield Beach, Fla.), 2013, 25(4): 630–634

    Article  Google Scholar 

  78. Wei Z, Wang D, Kim S, Kim S Y, Hu Y, Yakes MK, Laracuente A R, Dai Z, Marder S R, Berger C, King WP, de Heer WA, Sheehan P E, Riedo E. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science, 2010, 328(5984): 1373–1376

    Article  Google Scholar 

  79. Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H, Xiao F. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20

    Article  Google Scholar 

  80. Zhou Y, Bao Q, Varghese B, Tang L A L, Tan C K, Sow C, Loh K P. Microstructuring of graphene oxide nanosheets using direct laser writing. Advanced materials (Deerfield Beach, Fla.), 2010, 22(1): 67–71

    Article  Google Scholar 

  81. Park J B, Xiong W, Gao Y, Qian M, Xie Z Q, Mitchell M, Zhou Y S, Han G H, Jiang L, Lu Y F. Fast growth of graphene patterns by laser direct writing. Applied Physics Letters, 2011, 98(12): 123109

    Article  Google Scholar 

  82. Park J B, Xiong W, Xie Z Q, Gao Y, Qian M, Mitchell M, Mahjouri-Samani M, Zhou Y S, Jiang L, Lu Y F. Transparent interconnections formed by rapid single-step fabrication of graphene patterns. Applied Physics Letters, 2011, 99(5): 053103

    Article  Google Scholar 

  83. Xiong W, Zhou Y S, Hou W J, Jiang L J, Gao Y, Fan L S, Jiang L, Silvain J F, Lu Y F. Direct writing of graphene patterns on insulating substrates under ambient conditions. Scientific Reports, 2014, 4: 4892

    Google Scholar 

  84. Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401

    Article  Google Scholar 

  85. Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselov K S, Basko D M, Ferrari A C. Raman spectroscopy of graphene edges. Nano Letters, 2009, 9(4): 1433–1441

    Article  Google Scholar 

  86. Kuzmenko A B, van Heumen E, Carbone F, van der Marel D. Universal optical conductance of graphite. Physical Review Letters, 2008, 100(11): 117401

    Article  Google Scholar 

  87. Rigo V A, Martins T B, da Silva A J R, Fazzio A, Miwa R H. Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(7): 075435

    Article  Google Scholar 

  88. Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J. Doping graphene with metal contacts. Physical Review Letters, 2008, 101(2): 026803

    Article  Google Scholar 

  89. David J M, Buehler M G. A numerical analysis of various cross sheet resistor test structures. Solid-State Electronics, 1977, 20(6): 539–543

    Article  Google Scholar 

  90. Fang T, Konar A, Xing H, Jena D. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Applied Physics Letters, 2007, 91(9): 092109

    Article  Google Scholar 

  91. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312–1314

    Article  Google Scholar 

  92. Gómez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 2007, 7(11): 3499–3503

    Article  Google Scholar 

  93. Eda G, Ball J, Mattevi C, Acik M, Artiglia L, Granozzi G, Chabal Y, Anthopoulos T D, Chhowalla M. Partially oxidized graphene as a precursor to graphene. Journal of Materials Chemistry, 2011, 21(30): 11217–11223

    Article  Google Scholar 

  94. Guo L, Zhang Y, Han D, Jiang H, Wang D, Li X, Xia H, Feng J, Chen Q, Sun H. Laser-mediated programmable N doping and simultaneous reduction of graphene oxides. Advanced Optical Materials, 2014, 2(2): 120–125

    Article  Google Scholar 

  95. Gates B D, Xu Q, Love J C, Wolfe D B, Whitesides G M. Unconventional nanofabrication. Annual Review of Materials Research, 2004, 34(1): 339–372

    Article  Google Scholar 

  96. Gates B D, Xu Q, Stewart M, Ryan D, Willson C G, Whitesides G M. New approaches to nanofabrication: molding, printing, and other techniques. Chemical Reviews, 2005, 105(4): 1171–1196

    Article  Google Scholar 

  97. Dixon C J, Curtines O W. Nanotechnology: Nanofabrication, Patterning, and Self Assembly. New York: Nova Science Publishers Inc., 2009

    Google Scholar 

  98. Mailly D. Nanofabrication techniques. European Physical Journal. Special Topics, 2009, 172(1): 333–342

    Article  Google Scholar 

  99. Wiley B J, Qin D, Xia Y. Nanofabrication at high throughput and low cost. ACS Nano, 2010, 4(7): 3554–3559

    Article  Google Scholar 

  100. Marrian C R K, Dobisz E A, Glembocki O J. Nanofabrication — how small can devices get. R & D Magazine, 1992, 34(2): 123

    Google Scholar 

  101. Marrian C R K, Tennant DM. Nanofabrication. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2003, 21(5): S207–S215

    Article  Google Scholar 

  102. Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2008, 2(4): 219–225

    Article  Google Scholar 

  103. Li L, Fourkas J T. Multiphoton polymerization. Materials Today, 2007, 10(6): 30–37

    Article  Google Scholar 

  104. Park S H, Yang D Y, Lee K S. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser & Photonics Reviews, 2009, 3(1–2): 1–11

    Article  Google Scholar 

  105. Lee K, Yang D, Park S H, Kim R H. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications. Polymers for Advanced Technologies, 2006, 17(2): 72–82

    Article  Google Scholar 

  106. Chong T C, Hong MH, Shi L P. Laser precision engineering: from microfabrication to nanoprocessing. Laser & Photonics Reviews, 2010, 4(1): 123–143

    Article  Google Scholar 

  107. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 1994, 19(11): 780–782

    Article  Google Scholar 

  108. Feigel A, Veinger M, Sfez B, Arsh A, Klebanov M, Lyubin V. Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses. Applied Physics Letters, 2003, 83(22): 4480–4482

    Article  Google Scholar 

  109. Gomez D, Goenaga I, Lizuain I, Ozaita M. Femtosecond laser ablation for microfluidics. Optical Engineering (Redondo Beach, Calif.), 2005, 44(5): 051105

    Google Scholar 

  110. Korte F, Serbin J, Koch J, Egbert A, Fallnich C, Ostendorf A, Chichkov B N. Towards nanostructuring with femtosecond laser pulses. Applied Physics. A, Materials Science & Processing, 2003, 77(2): 229–235

    Google Scholar 

  111. Suriano R, Kuznetsov A, Eaton S M, Kiyan R, Cerullo G, Osellame R, Chichkov B N, Levi M, Turri S. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Applied Surface Science, 2011, 257(14): 6243–6250

    Article  Google Scholar 

  112. Chichkov B N, Momma C, Nolte S, Von Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics. A, Materials Science & Processing, 1996, 63(2): 109–115

    Article  Google Scholar 

  113. Sun H B, Xu Y, Juodkazis S, Sun K, Watanabe M, Matsuo S, Misawa H, Nishii J. Arbitrary-lattice photonic crystals created by multiphoton microfabrication. Optics Letters, 2001, 26(6): 325–327

    Article  Google Scholar 

  114. Zhou G, Gu M. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal. Optics Letters, 2006, 31(18): 2783–2785

    Article  Google Scholar 

  115. Gu M, Jia B, Li J, Ventura M J. Fabrication of three-dimensional photonic crystals in quantum-dot-based materials. Laser & Photonics Reviews, 2010, 4(3): 414–431

    Article  Google Scholar 

  116. Fischer P, McWilliam A, Paterson L, Brown C T A, Sibbett W, Dholakia K, MacDonald M P. Two-photon ablation with 1278 nm laser radiation. Journal of Optics. A, Pure and Applied Optics, 2007, 9(6): S19–S23

    Article  Google Scholar 

  117. Waldbaur A, Rapp H, Länge K, Rapp B E. Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Analytical Methods, 2011, 3(12): 2681–2716

    Article  Google Scholar 

  118. Goldman J R, Prybyla J A. Ultrafast dynamics of laser-excited electron distributions in silicon. Physical Review Letters, 1994, 72(9): 1364–1367

    Article  Google Scholar 

  119. Xiong W, Zhou Y S, He X N, Gao Y, Mahjouri-Samani M, Baldacchini T, Lu Y F. Three-dimensional sub-wavelength fabrication by integration of additive and subtractive femtosecond-laser direct writing. In: Proceedings of MRS, Volume 1499, 2013

    Google Scholar 

  120. Zappe H P. Fundamentals of Micro-Optics. Cambridge, New York: Cambridge University Press, 2010

    Book  Google Scholar 

  121. Qin D, Xia Y, Whitesides G M. Soft lithography for micro- and nanoscale patterning. Nature Protocols, 2010, 5(3): 491–502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Lu.

Additional information

Wei Xiong is currently a postdoctoral research associate in Laser Assisted Nano Engineering (LANE) Lab at University of Nebraska-Lincoln (UNL). He received his Ph.D. degree in electrical engineering from University of Nebraska-Lincoln in 2013 and obtained his B.Sc. and M.Sc. degrees from Huazhong University of Science and Technology in 2004 and Fudan University in 2007, respectively. His research interests include synthesis and integration of carbon nano-materials such as carbon nanotubes and graphene, and 3D fabrication of polymeric and carbon-based functional micro/nano-structures. Currently he is working on 3D micro/nanofabrication and large-scale 2D material synthesis.

Yongfeng Lu is currently the Lott Distinguished Professor of Engineering at the University of Nebraska-Lincoln (UNL). He received his bachelor degree from Tsinghua University (China) in 1984 and M.Sc. and Ph.D. degrees from Osaka University (Japan) in 1988 and 1991, all in electrical engineering. From 1991 to 2002, he was a faculty in the ECE Department at National University of Singapore. He joined the Department of Electrical Engineering at UNL in 2002. He has more than 20 years of experience in processing and characterization of micro/nanostructured materials. His group has research projects funded by NSF, AFOSR, ONR, DTRA, DOE, DOT, NCESR, NRI, private companies, and other foundations in Japan, with research expenditures of $20 million in the past a few years. His research has led to a number of commercialization and product developments. Dr. Lu has authored or co-authored over 300 journal papers and 350 conference papers. He has been elected to SPIE fellow, LIA fellow, and OSA fellow. He served as the President of the Laser Institute of America in 2014. He has also served as chair and general chair for major international conferences in the field including the general congress chair for the International Congress of Applications of Lasers and Electro-Optics in 2007 and 2008, and general co-chair for LASE in Photonics West 2014 and 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Zhou, Y., Hou, W. et al. Laser-based micro/nanofabrication in one, two and three dimensions. Front. Optoelectron. 8, 351–378 (2015). https://doi.org/10.1007/s12200-015-0481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-015-0481-3

Keywords

Navigation