Skip to main content
Log in

Asymmetric resonant cavities and their applications in optics and photonics: a review

  • Review Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

Asymmetric resonant cavities (ARCs) with smoothly deformed boundaries are currently under intensive study because they possess distinct properties that conventional symmetric cavities cannot provide. On one hand, it has been demonstrated that ARCs allow for highly directional emission instead of the in-plane isotropic light output in symmetric whispering-gallery cavities, such as microdisks, microspheres, and microtoroids. On the other hand, ARCs behave like open billiard system and thus offer an excellent platform to test classical and quantum chaos. This article reviews the recent progresses and prospects for the experimental realization of ARCs, with applications toward highly directional microlasing, strong-coupling light-matter interaction, and highly sensitive biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vahala K J. Optical Microcavities. Singapore: World Scientific, 2004

    Book  Google Scholar 

  2. Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839–846

    Article  Google Scholar 

  3. Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J. The atom-cavity microscope: single atoms bound in orbit by single photons. Science, 2000, 287(5457): 1447–1453

    Article  Google Scholar 

  4. Gerard J M, Sermage B, Gayral B, Legrand B, Costard E, Thierry-Mieg V. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Physical Review Letters, 1998, 81(5): 1110–1113

    Article  Google Scholar 

  5. Foresi J S, Villeneuve P R, Ferrera J, Thoen E R, Steinmeyer G, Fan S, Joannopoulos J D, Kimerling L C, Smith H I, Ippen E P. Photonic-bandgap microcavities in optical waveguides. Nature, 1997, 390(6656): 143–145

    Article  Google Scholar 

  6. Vučković J, Lončr M, Mabuchi H, Scherer A. Design of photonic crystal microcavities for cavity QED. Physical Review E, 2001, 65(1): 016608

    Article  Google Scholar 

  7. Srinivasan K, Barclay P E, Painter O, Chen J X, Cho A Y, Gmachl C. Experimental demonstration of a high quality factor photonic crystal microcavity. Applied Physics Letters, 2003, 83(10): 1915–1917

    Article  Google Scholar 

  8. Ching S C, Lai H M, Young K. Dielectric microspheres as optical cavities: Einstein A and B coefficients and level shift. Journal of the Optical Society of America B, 1987, 4(12): 2004–2009

    Article  Google Scholar 

  9. Collot L, Lefevre-Seguin V, Brune M, Raimond J M, Haroche S. Very high-Q whispering-gallery mode resonances observed on fused silica microspheres. Europhysics Letters, 1993, 23(5): 327–334

    Article  Google Scholar 

  10. Gayral B, Gerard J M, Lemaitre A, Dupuis C, Manin L, Pelouard J L. High-Q wet-etched GaAs microdisks containing InAs quantum boxes. Applied Physics Letters, 1999, 75(13): 1908–1910

    Article  Google Scholar 

  11. Moon H J, Chough Y T, An K. Cylindrical microcavity laser based on the evanescent-wave-coupled gain. Physical Review Letters, 2000, 85(15): 3161–3164

    Article  Google Scholar 

  12. Armani D K, Kippenberg T J, Spillane S M, Vahala K J. Ultrahigh-Q toroid microcavity on a chip. Nature, 2003, 421(6926): 925–928

    Article  Google Scholar 

  13. Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H, Rempe G. Cavity cooling of a single atom. Nature, 2004, 428(6978): 50–52

    Article  Google Scholar 

  14. McKeever J, Boca A, Boozer A D, Buck J R, Kimble H J. Experimental realization of a one-atom laser in the regime of strong coupling. Nature, 2003, 425(6955): 268–271

    Article  Google Scholar 

  15. Noda S, Fujita M, Asano T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photonics, 2007, 1(8): 449–458

    Article  Google Scholar 

  16. Tanabe T, Notomi M, Kuramochi E, Shinya A, Taniyama H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nature Photonics, 2007, 1(1): 49–52

    Article  Google Scholar 

  17. Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes. Physics Letters A, 1989, 137(7–8): 393–397

    Article  Google Scholar 

  18. Savchenkov A A, Ilchenko V S, Matsko A B, Maleki L. Kilohertz optical resonances in dielectric crystal cavities. Physical Review A, 2004, 70(5): 051804

    Article  Google Scholar 

  19. McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A. Whispering-gallery mode microdisk lasers. Applied Physics Letters, 1992, 60(3): 289–291

    Article  Google Scholar 

  20. Sandoghdar V, Treussart F, Hare J, Lefèvre-Seguin V, Raimond J M, Haroche S. Very low threshold whispering-gallery-mode microsphere laser. Physical Review A, 1996, 54(3): R1777–R1780

    Article  Google Scholar 

  21. Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J. Observation of strong coupling between one atom and a monolithic microresonator. Nature, 2006, 443(7112): 671–674

    Article  Google Scholar 

  22. Armani A M, Kulkarni R P, Fraser S E, Flagan R C, Vahala K J. Label-free, single-molecule detection with optical microcavities. Science, 2007, 317(5839): 783–787

    Article  Google Scholar 

  23. Gorodetsky M L, Ilchenko V S. High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers. Optics Communications, 1994, 113(1–3): 133–143

    Article  Google Scholar 

  24. Dubreuil N, Knight J C, Leventhal D, Sandoghdar V, Hare J, Lefere-Seguin V, Raimond J M, Haroche S. Mapping whispering-gallery modes in microspheres with a near-field probe. Optics Letters, 1995, 20(14): 1515–1517

    Article  Google Scholar 

  25. Cai M, Painter O, Vahala K J. Observation of critical coupling in a fiber taper to silica-microsphere whispering gallery mode system. Physical Review Letters, 2000, 85(1): 74–77

    Article  Google Scholar 

  26. Nöckel J U, Stone A D. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 1997, 385(6611): 45–47

    Article  Google Scholar 

  27. Narimanov E E, Podolskiy V A. Chaos-assisted tunneling and dynamical localization in dielectric microdisk resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 40–51

    Article  Google Scholar 

  28. Chin M K, Chu D Y, Ho S T. Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes. Journal of Applied Physics, 1994, 75(7): 3302–3307

    Article  Google Scholar 

  29. Wiersig J. Boundary element method for resonances in dielectric microcavities. Journal of Optics A: Pure and Applied Optics, 2003, 5(1): 53–60

    Article  Google Scholar 

  30. Zou C L, Yang Y, Xiao Y F, Dong C H, Han Z F, Guo G C. Accurately calculating high quality factor of whispering-gallery modes with boundary element method. Journal of the Optical Society of America B, 2009, 26(11): 2050–2053

    Article  Google Scholar 

  31. Boriskina S V, Sewell P, Benson T M, Nosich A I. Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization. Journal of the Optical Society of America A, 2004, 21(3): 393–402

    Article  Google Scholar 

  32. Fujita M, Baba T. Proposal and finite-difference time-domain simulation of whispering gallery mode microgear cavity. IEEE Journal of Quantum Electronics, 2001, 37(10): 1253–1258

    Article  Google Scholar 

  33. Guo W H, Li W J, Huang Y Z. Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation. IEEE Microwave and Wireless Components Letters, 2001, 11(5): 223–225

    Article  MathSciNet  Google Scholar 

  34. Stöckmann H J. Quantum Chaos: An Introduction. UK: Cambridge University Press, 1999

    Book  MATH  Google Scholar 

  35. Backer A. Quantum chaos in billiards. Computing in Science and Engineering, 2007, 9(3): 60–64

    Article  Google Scholar 

  36. Hentschel M, Schomerus H, Schubert R. Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond. Europhysics Letters, 2003, 62(5): 636–642

    Article  Google Scholar 

  37. Nöckel J U, Chang R K. 2-D microcavities: theory and experiments. In: van Zee R D, Looney J P, eds. Cavity-Enhanced Spectroscopies. San Diego: Academic Press, 2002

    Google Scholar 

  38. Heller E J. Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of periodic orbits. Physical Review Letters, 1984, 53(16): 1515–1518

    Article  MathSciNet  Google Scholar 

  39. Schwefel H G L, Rex N B, Tureci H E, Chang R K, Stone A D, Ben-Messaoud T, Zyss J. Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers. Journal of the Optical Society of America B, 2004, 21(5): 923–934

    Article  Google Scholar 

  40. Schäfer R, Kuhl U, Stöckmann H J. Directed emission from a dielectric microwave billiard with quadrupolar shape. New Journal of Physics, 2006, 8(3): 46

    Article  Google Scholar 

  41. Lee S B, Yang J, Moon S, Lee J H, An K, Shim J B, Lee HW, Kim SW. Universal output directionality of single modes in a deformed microcavity. Physical Review A, 2007, 75(1): 011802

    Article  Google Scholar 

  42. Levi A F J, Slusher R E, McCall S L, Glass J L, Pearton S J, Logan R A. Directional light coupling from microdisk lasers. Applied Physics Letters, 1993, 62(6): 561–563

    Article  Google Scholar 

  43. Mekis A, 5Nöckel J U, Chen G, Stone A D, Chang R K. Ray chaos and Q spoiling in lasing droplets. Physical Review Letters, 1995, 75(14): 2682–2685

    Article  Google Scholar 

  44. Moon H J, Ko K H, Noh Y C, Kim G H, Lee J H, Chang J S. Observation of Q-spoiling effects on the resonance modes from a noncircularly deformed liquid jet. Optics Letters, 1997, 22(23): 1739–1741

    Article  Google Scholar 

  45. Nöckel J U, Stone A D, Chen G, Grossman H L, Chang R K. Directional emission from asymmetric resonant cavities. Optics Letters, 1996, 21(19): 1609–1611

    Article  Google Scholar 

  46. Gmachl C, Capasso F, Narimanov E E, Nöckel J U, Stone A D, Faist J, Sivco D L, Cho A Y. High-power directional emission from microlasers with chaotic resonators. Science, 1998, 280(5369): 1556–1564

    Article  Google Scholar 

  47. Gianordoli S, Hvozdara L, Strasser G, Schrenk W, Faist J, Gornik E. Long-wavelength (λ = 10 μm) quadrupolar-shaped GaAs-AlGaAs microlasers. IEEE Journal of Quantum Electronics, 2000, 36(4): 458–464

    Article  Google Scholar 

  48. Gmachl C, Narimanov E E, Capasso F, Baillargeon J N, Cho A Y. Kolmogorov-Arnold-Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators. Optics Letters, 2002, 27(10): 824–826

    Article  Google Scholar 

  49. Lee S B, Lee J H, Chang J S, Moon H J, Kim S W, An K. Observation of scarred modes in asymmetrically deformed microcylinder lasers. Physical Review Letters, 2002, 88(3): 033903

    Article  Google Scholar 

  50. Rex N B, Tureci H E, Schwefel H G L, Chang R K, Stone A D. Fresnel filtering in lasing emission from scarred modes of wavechaotic optical resonators. Physical Review Letters, 2002, 88(9): 094102

    Article  Google Scholar 

  51. Polson R C, Vardeny Z V. Directional emission from asymmetric microlaser resonators of p-conjugated polymers. Applied Physics Letters, 2004, 85(11): 1892–1894

    Article  Google Scholar 

  52. McDonald S W, Kaufman A N. Wave chaos in the stadium: statistical properties of short-wave solutions of the Helmholts equation. Physical Review A, 1988, 37(8): 3067–3086

    Article  MathSciNet  Google Scholar 

  53. Tomsovic S, Heller E J. Semiclassical dynamics of chaotic motion: unexpected long-time accuracy. Physical Review Letters, 1991, 67(6): 664–667

    Article  MathSciNet  MATH  Google Scholar 

  54. Biham O, Kvale M. Unstable periodic orbits in the stadium billiard. Physical Review A, 1992, 46(10): 6334–6339

    Article  MathSciNet  Google Scholar 

  55. Heller E J, Tomsovic S. Postmodern quantum mechanics. Physics Today, 1993, 46(7): 38–46

    Article  Google Scholar 

  56. Fukushima T, Biellak S A, Sun Y, Siegman A E. Beam propagation behavior in a quasi-stadium laser diode. Optics Express, 1998, 2(2): 21–28

    Article  Google Scholar 

  57. Fukushima T. Analysis of resonator eigenmodes in symmetric quasi-stadium laser diodes. Journal of Lightwave Technology, 2000, 18(12): 2208–2216

    Article  Google Scholar 

  58. Fukushima T, Harayama T, Davis P, Vaccaro P O, Nishimura T, Aida T. Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors. Optics Letters, 2002, 27(16): 1430–1432

    Article  Google Scholar 

  59. Shinohara S, Fukushima T, Harayama T. Light emission patterns from stadium-shaped semiconductor microcavity lasers. Physical Review A, 2008, 77(3): 033807

    Article  Google Scholar 

  60. Harayama T, Davis P, Ikeda K S. Stable oscillations of a spatially chaotic wave function in a microstadium laser. Physical Review Letters, 2003, 90(6): 063901

    Article  Google Scholar 

  61. Fukushima T, Harayama T. Stadium and quasi-stadium laser diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 1039–1050

    Article  Google Scholar 

  62. Harayama T, Fukushima T, Sunada S, Ikeda K S. Asymmetric stationary lasing patterns in 2D symmetric microcavities. Physical Review Letters, 2003, 91(7): 073903

    Article  Google Scholar 

  63. Fang W, Cao H, Solomon G S. Control of lasing in fully chaotic open microcavities by tailoring the shape factor. Applied Physics Letters, 2007, 90(8): 081108

    Article  Google Scholar 

  64. Fang W, Yamilov A, Cao H. Analysis of high-quality modes in open chaotic microcavities. Physical Review A, 2005, 72(2): 023815

    Article  Google Scholar 

  65. Choi M, Tanaka T, Fukushima T, Harayama T. Control of directional emission in quasistadium microcavity laser diodes with two electrodes. Applied Physics Letters, 2006, 88(21): 211110

    Article  Google Scholar 

  66. Lebental M, Lauret J S, Hierle R, Zyss J. Highly directional stadium-shaped polymer microlasers. Applied Physics Letters, 2006, 88(3): 031108

    Article  Google Scholar 

  67. Lebental M, Lauret J S, Zyss J, Schmit C, Bogomolny E. Directional emission of stadium-shaped microlasers. Physical Review A, 2007, 75(3): 033806

    Article  Google Scholar 

  68. Fang W, Cao H. Wave interference effect on polymer microstadium laser. Applied Physics Letters, 2007, 91(4): 041108

    Article  Google Scholar 

  69. Lee S Y, Ryu J W, Shim J B, Lee S B, Kim S W, An K. Divergent Petermann factor of interacting resonances in a stadium-shaped microcavity. Physical Review A, 2008, 78(1): 015805

    Article  Google Scholar 

  70. Chern G D, Tureci H E, Stone A D, Chang R K, Kneissl M, Johnson N M. Unidirectional lasing from InGaN multiplequantum-well spiral-shaped micropillars. Applied Physics Letters, 2003, 83(9): 1710–1712

    Article  Google Scholar 

  71. Kneissl M, Teepe M, Miyashita N, Johnson N M, Chern G D, Chang R K. Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission. Applied Physics Letters, 2004, 84(14): 2485–2487

    Article  Google Scholar 

  72. Ben-Messaoud T, Zyss J. Unidirectional laser emission from polymer-based spiral microdisks. Applied Physics Letters, 2005, 86(24): 241110

    Article  Google Scholar 

  73. Tulek A, Vardeny Z V. Unidirectional laser emission from p-conjugated polymer microcavities with broken symmetry. Applied Physics Letters, 2007, 90(16): 161106

    Article  Google Scholar 

  74. Lee S Y, Rim S, Ryu J W, Kwon T Y, Choi M, Kim C M. Quasiscarred resonances in a spiral-shaped microcavity. Physical Review Letters, 2004, 93(16): 164102

    Article  Google Scholar 

  75. Kim C M, Lee S H, Oh K R, Kim J H. Experimental verification of quasiscarred resonance mode. Applied Physics Letters, 2009, 94(23): 231120

    Article  Google Scholar 

  76. Lee J, Rim S, Cho J, Kim C M. Resonances near the classical separatrix of a weakly deformed circular microcavity. Physical Review Letters, 2008, 101(6): 064101

    Article  Google Scholar 

  77. Kwon T Y, Lee S Y, Kurdoglyan M S, Rim S, Kim C M, Park Y J. Lasing modes in a spiral-shaped dielectric microcavity. Optics Letters, 2006, 31(9): 1250–1252

    Article  Google Scholar 

  78. Hentschel M, Kwon T Y. Designing and understanding directional emission from spiral microlasers. Optics Letters, 2009, 34(2): 163–165

    Article  Google Scholar 

  79. Audet R, Belkin MA, Fan J A, Lee B G, Lin K, Capasso F. Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators. Applied Physics Letters, 2007, 91(13): 131106

    Article  Google Scholar 

  80. Kim C M, Cho J, Lee J, Rim S, Lee S H, Oh K R, Kim J H. Continuous wave operation of a spiral-shaped microcavity laser. Applied Physics Letters, 2008, 92(13): 131110

    Article  Google Scholar 

  81. Wu X, Li H, Liu L, Xu L. Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser. Applied Physics Letters, 2008, 93(8): 081105

    Article  Google Scholar 

  82. Lee J Y, Luo X, Poon A W. Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiralshaped microdisk resonators. Optics Express, 2007, 15(22): 14650–14666

    Article  Google Scholar 

  83. Wiersig J, Hentschel M. Combining directional light output and ultralow loss in deformed microdisks. Physical Review Letters, 2008, 100(3): 033901

    Article  Google Scholar 

  84. Yan C, Wang Q J, Diehl L, Hentschel M, Wiersig J, Yu N, Pflugl C, Capasso F, Belkin M A, Edamura T, Yamanishi M, Kan H. Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity. Applied Physics Letters, 2009, 94(25): 251101

    Article  Google Scholar 

  85. Yi C H, Kim M W, Kim C M. Lasing characteristics of a limacon-shaped microcavity laser. Applied Physics Letters, 2009, 95(14): 141107

    Article  Google Scholar 

  86. Song Q, Fang W, Liu B, Ho S T, Solomon G S, Cao H. Chaotic microcavity laser with high quality factor and unidirectional output. Physical Review A, 2009, 80(4): R041807

    Article  Google Scholar 

  87. Shinohara S, Hentchel M, Wiersig J, Sasaki T, Harayama T. Ray-wave correspondence in limacon-shaped semiconductor microcavities. Physical Review A, 2009, 80(3): R031801

    Article  Google Scholar 

  88. Chang S, Chang R K, Stone A D, Nöckel J U. Observation of emission from chaotic lasing modes in deformed microspheres: displacement by the stable-orbit modes. Journal of the Optical Society of America B, 2000, 17(11): 1828–1834

    Article  Google Scholar 

  89. Lacey S, Wang H. Directional emission from whispering-gallery modes in deformed fused-silica microspheres. Optics Letters, 2001, 26(24): 1943–1945

    Article  Google Scholar 

  90. Lacey S, Wang H, Foster D H, Nöckel J U. Directional tunneling escape from nearly spherical optical resonators. Physical Review Letters, 2003, 91(3): 033902

    Article  Google Scholar 

  91. Xiao Y F, Dong C H, Han Z F, Guo G C, Park Y S. Directional escape from a high-Q deformed microsphere induced by short CO2 laser pulses. Optics Letters, 2007, 32(6): 644–646

    Article  Google Scholar 

  92. Xiao Y F, Dong C H, Zou C L, Han Z F, Yang L, Guo G C. Low-threshold microlaser in a high-Q asymmetrical microcavity. Optics Letters, 2009, 34(4): 509–511

    Article  Google Scholar 

  93. Dong C, Xiao Y, Yang Y, Han Z, Guo G, Yang L. Directly mapping whispering gallery modes in a microsphere through modal coupling and directional emission. Chinese Optics Letters, 2008, 6(4): 300–302

    Article  Google Scholar 

  94. Park Y S, Wang H. Radiation pressure driven mechanical oscillation in deformed silica microspheres via free space evanescent excitation. Optics Express, 2007, 15(25): 16471–16477

    Article  Google Scholar 

  95. Park Y S, Wang H. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Physics, 2009, 5(7): 489–493

    Article  Google Scholar 

  96. Park Y S, Cook A K, Wang H. Cavity QED with defect centers and silica resonators. Nano Letters, 2006, 6(9): 2075–2079

    Article  Google Scholar 

  97. Zhang L M, Wang Y X, Zhang F J, Claus R O. Observation of whispering-gallery and directional resonant laser emission in ellipsoidal microcavities. Journal of the Optical Society of America B, 2006, 23(9): 1793–1800

    Article  Google Scholar 

  98. Whittaker D M, Guimaraes P S S, Sanvitto D, Vinck H, Lam S, Daraei A, Timpson J A, Fox A M, Skolnick MS, Ho Y L D, Rarity J G, Hopkinson M, Tahraoui A. High Q modes in elliptical microcavity pillars. Applied Physics Letters, 2007, 90(16): 161105

    Article  Google Scholar 

  99. Yang Y, Xiao Y F, Dong C H, Cui JM, Han Z F, Li G D, Guo G C. Fiber-taper-coupled zeolite cylindrical microcavity with hexagonal cross section. Applied Optics, 2007, 46(31): 7590–7593

    Article  Google Scholar 

  100. Braun I, Ihlein G, Laeri F, Nöckel J U, Schulz-Ekloff G, Schuth F, Vietze U, Weiss O, Wohrle D. Hexagonal microlasers based on organic dyes in nanoporous crystals. Applied Physics B, 2000, 70(3): 335–343

    Article  Google Scholar 

  101. Monat C, Seassal C, Letartre X, Regreny P, Gendry M, Romeo P R, Viktorovitch P, Vassord’Yerville M L, Cassagne D, Albert J P, Jalaguier E, Pocas S, Aspar B. Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane. Journal of Applied Physics, 2003, 93(1): 23–31

    Article  Google Scholar 

  102. Wiersig J. Hexagonal dielectric resonators and microcrystal lasers. Physical Review A, 2003, 67(2): 023807

    Article  Google Scholar 

  103. Shang L, Liu L, Xu L. Highly collimated laser emission from a peanut-shaped microcavity. Applied Physics Letters, 2008, 92(7): 071111

    Article  Google Scholar 

  104. Poon A W, Courvoisier F, Chang R K. Multimode resonances in square-shaped optical microcavities. Optics Letters, 2001, 26(9): 632–634

    Article  Google Scholar 

  105. Ling T, Liu L, Song Q, Xu L, Wang W. Intense directional lasing from a deformed square-shaped organic-inorganic hybrid glass microring cavity. Optics Letters, 2003, 28(19): 1784–1786

    Article  Google Scholar 

  106. Lee H T, Poon A W. Fano resonances in prism-coupled square micropillars. Optics Letters, 2004, 29(1): 5–7

    Article  Google Scholar 

  107. Wu J H, Liu A Q. Exact solution of resonant modes in a rectangular resonator. Optics Letters, 2006, 31(11): 1720–1722

    Article  Google Scholar 

  108. Huang Y Z, Chen Q, Guo W H, Yu L J. Experimental observation of resonant modes in GaInAsP microsquare resonators. IEEE Photonics Technology Letters, 2005, 17(12): 2589–2591

    Article  Google Scholar 

  109. Huang Y Z, Guo W H, Wang Q M. Influence of output waveguide on mode quality factor in semiconductor microlasers with an equilateral triangle resonator. Applied Physics Letters, 2000, 77(22): 3511–3513

    Article  Google Scholar 

  110. Wysin G M. Electromagnetic modes in dielectric equilateral triangle resonators. Journal of the Optical Society of America B, 2006, 23(8): 1586–1599

    Article  MathSciNet  Google Scholar 

  111. Kurdoglyan M S, Lee S Y, Rim S, Kim C M. Unidirectional lasing from a microcavity with a rounded isosceles triangle shape. Optics Letters, 2004, 29(23): 2758–2760

    Article  Google Scholar 

  112. Baryshnikov Y, Heider P, Parz W, Zharnitsky V. Whispering gallery modes inside asymmetric resonant cavities. Physical Review Letters, 2004, 93(13): 133902

    Article  Google Scholar 

  113. Apalkov V M, Raikh M E. Directional emission from a microdisk resonator with a linear defect. Physical Review B, 2004, 70(19): 195317

    Article  Google Scholar 

  114. Fang W, Cao H, Podolskiy V A, Narimanov E E. Dynamical localization in microdisk lasers. Optics Express, 2005, 13(15): 5641–5652

    Article  Google Scholar 

  115. Boriskina S V, Benson T M, Sewell P, Nosich A I. Q Factor and emission pattern control of the WG modes in notched microdisk resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 52–58

    Article  Google Scholar 

  116. Wiersig J, Hentschel M. Unidirectional light emission from high-Q modes in optical microcavities. Physical Review A, 2006, 73(3): R031802

    Article  Google Scholar 

  117. Dettmann C P, Morozov G V, Sieber M, Waalkens H. Directional emission from an optical microdisk resonator with a point scatterer. Europhysics Letters, 2008, 82(3): 34002

    Article  Google Scholar 

  118. Djellali N, Gozhyk I, Owens D, Lozenko S, Lebental M, Lautru J, Ulysse C, Kippelen B, Zyss J. Controlling the directional emission of holey organic microlasers. Applied Physics Letters, 2009, 95(10): 101108

    Article  Google Scholar 

  119. Lee S B, Yang J, Moon S, Lee J H, An K, Shim J B, Lee HW, Kim S W. Chaos-assisted nonresonant optical pumping of quadrupoledeformed microlasers. Applied Physics Letters, 2007, 90(4): 041106

    Article  Google Scholar 

  120. Yang J, Lee S B, Moon S, Lee S Y, Shim J B, Kim S W, Lee J H, An K. Free-space resonant coupling in a highly deformed microcavity. In: Proceedings of the 11th International Conference on Transparent Optical Networks (ICTON). 2009, Tu.P.17

  121. Tureci H E, Stone A D. Deviation from Snell’s law for beams transmitted near the critical angle: application to microcavity lasers. Optics Letters, 2002, 27(1): 7–9

    Article  Google Scholar 

  122. Rex N B, Tureci H E, Schwefel H G L, Chang R K, Stone A D. Fresnel filtering in lasing emission from scarred modes of wavechaotic optical resonators. Physical Review Letters, 2002, 88(9): 094102

    Article  Google Scholar 

  123. Schomerus H, Hentschel M. Correcting ray optics at curved dielectric microresonator interfaces: phase-space. Physical Review Letters, 2006, 96(24): 243903

    Article  Google Scholar 

  124. Altmann E G, Magno G D, Hentschel M. Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics. Europhysics Letters, 2008, 84(1): 10008

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Feng Xiao, Chang-Ling Zou, Zheng-Fu Han or Qihuang Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, YF., Zou, CL., Li, Y. et al. Asymmetric resonant cavities and their applications in optics and photonics: a review. Front. Optoelectron. China 3, 109–124 (2010). https://doi.org/10.1007/s12200-010-0003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-010-0003-2

Keywords

Navigation