Skip to main content

Advertisement

Log in

Degradation and Remodeling of Epitaxially Grown Collagen Fibrils

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

The extracellular matrix (ECM) in the tumor microenvironment contains high densities of collagen that are highly aligned, resulting in directional migration called contact guidance that facilitates efficient migration out of the tumor. Cancer cells can remodel the ECM through traction force controlled by myosin contractility or proteolytic activity controlled by matrix metalloproteinase (MMP) activity, leading to either enhanced or diminished contact guidance.

Methods

Recently, we have leveraged the ability of mica to epitaxially grow aligned collagen fibrils in order to assess contact guidance. In this article, we probe the mechanisms of remodeling of aligned collagen fibrils on mica by breast cancer cells.

Results

We show that cells that contact guide with high fidelity (MDA-MB-231 cells) exert more force on the underlying collagen fibrils than do cells that contact guide with low fidelity (MTLn3 cells). These high traction cells (MDA-MB-231 cells) remodel collagen fibrils over hours, pulling so hard that the collagen fibrils detach from the surface, effectively delaminating the entire contact guidance cue. Myosin or MMP inhibition decreases this effect. Interestingly, blocking MMP appears to increase the alignment of cells on these substrates, potentially allowing the alignment through myosin contractility to be uninhibited. Finally, amplification or dampening of contact guidance with respect to a particular collagen fibril organization is seen under different conditions.

Conclusions

Both myosin II contractility and MMP activity allow MDA-MB-231 cells to remodel and eventually destroy epitaxially grown aligned collagen fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

TME:

Tumor microenvironment

SHG:

Second harmonic generation

ECM:

Extracellular matrix

TIMP:

Tissue inhibitor of matrix metalloproteinase

MMP:

Matrix metalloproteinase

DMEM:

Dulbecco’s modified Eagles medium

FBS:

Fetal bovine serum

NA:

Numerical aperture

HSD:

Honest significant difference

References

  1. Alexander, N. R., K. M. Branch, A. Parekh, E. S. Clark, L. C. Lwueke, S. A. Guelcher, and A. M. Weaver. Extracellular matrix rigidity promotes invadopodia activity. Curr. Biol. 18:1295–1299, 2008.

    Article  Google Scholar 

  2. Barocas, V. H., and R. T. Tranquillo. An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng. Trans. ASME 119:137–145, 1997.

    Article  Google Scholar 

  3. Biela, S. A., Y. Su, J. P. Spatz, and R. Kemkemer. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range. Acta Biomater. 5:2460–2466, 2009.

    Article  Google Scholar 

  4. Chiu, C.-L., M. A. Digman, and E. Gratton. Cell matrix remodeling ability shown by image spatial correlation. J. Biophys. 2013:8, 2013.

    Article  Google Scholar 

  5. Clark, P., P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson. Topographical control of cell behavior. 2. Multiple grooved substrata. Development 108:635–644, 1990.

    Google Scholar 

  6. Crocker, J. C., and D. G. Grier. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179:298–310, 1996.

    Article  Google Scholar 

  7. Dickinson, R. B., S. Guido, and R. T. Tranquillo. Biased cell-migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann. Biomed. Eng. 22:342–356, 1994.

    Article  Google Scholar 

  8. Drifka, C. R., A. G. Loeffler, C. R. Esquibel, S. M. Weber, K. W. Eliceiri, and W. J. Kao. Human pancreatic stellate cells modulate 3D collagen alignment to promote the migration of pancreatic ductal adenocarcinoma cells. Biomed. Microdevices 18:105, 2016.

    Article  Google Scholar 

  9. Drifka, C. R., A. G. Loeffler, K. Mathewson, A. Keikhosravi, J. C. Eickhoff, Y. M. Liu, S. M. Weber, W. J. Kao, and K. W. Eliceiri. Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection. Oncotarget 7:76197–76213, 2016.

    Article  Google Scholar 

  10. Fellouse, F. A., and S. Sidhu. Making Antibodies in Bacteria. Baca Raton: CRC Press, pp. 151–172, 2013.

    Book  Google Scholar 

  11. Guo, C., and L. J. Kaufman. Flow and magnetic field induced collagen alignment. Biomaterials 28:1105–1114, 2007.

    Article  Google Scholar 

  12. Haage, A., D. H. Nam, X. Ge, and I. C. Schneider. Matrix metalloproteinase-14 is a mechanically regulated activator of secreted MMPs and invasion. Biochem. Biophys. Res. Commun. 450:213–218, 2014.

    Article  Google Scholar 

  13. Haage, A., and I. C. Schneider. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells. Faseb J. 28:3589–3599, 2014.

    Article  Google Scholar 

  14. Hall, M. S., F. Alisafaei, E. Ban, X. Z. Feng, C. Y. Hui, V. B. Shenoy, and M. M. Wu. Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc. Natl. Acad. Sci. USA 113:14043–14048, 2016.

    Article  Google Scholar 

  15. Hartman, O., C. Zhang, E. L. Adams, M. C. Farach-Carson, N. J. Petrelli, B. D. Chase, and J. F. Rabolt. Microfabricated electrospun collagen membranes for 3-D cancer models and drug screening applications. Biomacromolecules 10:2019–2032, 2009.

    Article  Google Scholar 

  16. Hayman, E. G., and E. Ruoslahti. Distribution of fetal bovine serum fibronectin and endogenous rat-cell fibronectin in extracellular matrix. J. Cell Biol. 83:255–259, 1979.

    Article  Google Scholar 

  17. Jacchetti, E., C. Di Rienzo, S. Meucci, F. Nocchi, F. Beltram, and M. Cecchini. Wharton’s Jelly human Mesenchymal Stem Cell contact guidance by noisy nanotopographies. Sci. Rep. 4:3830, 2014.

    Article  Google Scholar 

  18. Janani, G., M. M. Pillai, R. Selvakumar, A. Bhattacharyya, and C. Sabarinath. An in vitro 3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis. Biofabrication 9:015016, 2017.

    Article  Google Scholar 

  19. Jerrell, R. J., and A. Parekh. Cellular traction stresses mediate extracellular matrix degradation by invadopodia. Acta Biomater. 10:1886–1896, 2014.

    Article  Google Scholar 

  20. Jiang, F. Z., H. Horber, J. Howard, and D. J. Muller. Assembly of collagen into microribbons: effects of pH and electrolytes. J. Struct. Biol. 148:268–278, 2004.

    Article  Google Scholar 

  21. Julias, M., H. M. Buettner, and D. I. Shreiber. Varying assay geometry to emulate connective tissue planes in an in vitro model of acupuncture needling. Anat. Rec. 294:243–252, 2011.

    Article  Google Scholar 

  22. Julias, M., L. T. Edgar, H. M. Buettner, and D. I. Shreiber. An in vitro assay of collagen fiber alignment by acupuncture needle rotation. Biomed. Eng. Online 7:19, 2008.

    Article  Google Scholar 

  23. Keating, M., A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick. Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility. Acta Biomater. 57:304–312, 2017.

    Article  Google Scholar 

  24. Kim, S. H., H. Y. Lee, S. P. Jung, S. Kim, J. E. Lee, S. J. Nam, and J. W. Bae. Role of secreted type I collagen derived from stromal cells in two breast cancer cell lines. Oncol. Lett. 8:507–512, 2014.

    Article  Google Scholar 

  25. Kirmse, R., H. Otto, and T. Ludwig. Interdependency of cell adhesion, force generation and extracellular proteolysis in matrix remodeling. J. Cell Sci. 124:1857–1866, 2011.

    Article  Google Scholar 

  26. Koster, S., J. B. Leach, B. Struth, T. Pfohl, and J. Y. Wong. Visualization of flow-aligned type I collagen self-assembly in tunable pH gradients. Langmuir 23:357–359, 2007.

    Article  Google Scholar 

  27. Kraning-Rush, C. M., S. P. Carey, J. P. Califano, B. N. Smith, and C. A. Reinhart-King. The role of the cytoskeleton in cellular force generation in 2D and 3D environments. Phys. Biol. 8:015009, 2011.

    Article  Google Scholar 

  28. Lee, K. B., D. H. Nam, J. A. M. Nuhn, J. Wang, I. C. Schneider, and X. Ge. Direct expression of active human tissue inhibitors of metalloproteinases by periplasmic secretion in Escherichia coli. Microb. Cell. Fact. 16:73, 2017.

    Article  Google Scholar 

  29. Leow, W. W., and W. Hwang. Epitaxially guided assembly of collagen layers on mica surfaces. Langmuir 27:10907–10913, 2011.

    Article  Google Scholar 

  30. Malik, R., P. I. Lelkes, and E. Cukierman. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol. 33:230–236, 2015.

    Article  Google Scholar 

  31. Matthews, J. A., G. E. Wnek, D. G. Simpson, and G. L. Bowlin. Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238, 2002.

    Article  Google Scholar 

  32. Meehan, S., and A. S. Nain. Role of suspended fiber structural stiffness and curvature on single-cell migration, nucleus shape, and focal-adhesion-cluster length. Biophys. J. 107:2604–2611, 2014.

    Article  Google Scholar 

  33. Mierke, C. T., D. Rosel, B. Fabry, and J. Brabek. Contractile forces in tumor cell migration. Eur. J. Cell Biol. 87:669–676, 2008.

    Article  Google Scholar 

  34. Nain, A. S., J. A. Phillippi, M. Sitti, J. MacKrell, P. G. Campbell, and C. Amon. Control of cell behavior by aligned micro/nanofibrous biomaterial scaffolds fabricated by spinneret-based tunable engineered parameters (STEP) technique. Small 4:1153–1159, 2008.

    Article  Google Scholar 

  35. Nam, D. H., and X. Ge. Development of a periplasmic FRET screening method for protease inhibitory antibodies. Biotechnol. Bioeng. 110:2856–2864, 2013.

    Article  Google Scholar 

  36. Nam, D. H., C. Rodriguez, A. G. Remacle, A. Y. Strongin, and X. Ge. Active-site MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries. Proc. Natl. Acad. Sci. USA 113:14970–14975, 2016.

    Article  Google Scholar 

  37. Narayanan, B., G. H. Gilmer, J. H. Tao, J. J. De Yoreo, and C. V. Ciobanu. Self-assembly of collagen on flat surfaces: the interplay of collagen-collagen and collagen-substrate interactions. Langmuir 30:1343–1350, 2014.

    Article  Google Scholar 

  38. Nuhn, J. A. M., A. M. Perez, and I. C. Schneider. Contact guidance diversity in rotationally aligned collagen matrices. Acta Biomater. 66:248–257, 2018.

    Article  Google Scholar 

  39. Poole, K., K. Khairy, J. Friedrichs, C. Franz, D. A. Cisneros, J. Howard, and D. Mueller. Molecular-scale topographic cues induce the orientation and directional movement of fibroblasts on two-dimensional collagen surfaces. J. Mol. Biol. 349:380–386, 2005.

    Article  Google Scholar 

  40. Provenzano, P. P., K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4:38, 2006.

    Article  Google Scholar 

  41. Ramirez-San Juan, G. R., P. W. Oakes, and M. L. Gardel. Contact guidance requires spatial control of leading-edge protrusion. Mol. Biol. Cell 28:1043–1053, 2017.

    Article  Google Scholar 

  42. Ray, A., O. Lee, Z. Win, R. M. Edwards, P. W. Alford, D. H. Kim, and P. P. Provenzano. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration. Nat. Commun. 8:14923, 2017.

    Article  Google Scholar 

  43. Ray, A., Z. M. Slama, R. K. Morford, S. A. Madden, and P. P. Provenzano. Enhanced directional migration of cancer stem cells in 3D aligned collagen matrices. Biophys. J. 112:1023–1036, 2017.

    Article  Google Scholar 

  44. Riching, K. M., B. L. Cox, M. R. Salick, C. Pehlke, A. S. Riching, S. M. Ponik, B. R. Bass, W. C. Crone, Y. Jiang, A. M. Weaver, K. W. Eliceiri, and P. J. Keely. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J. 107:2546–2558, 2014.

    Article  Google Scholar 

  45. Ruiz, S. A., and C. S. Chen. Microcontact printing: a tool to pattern. Soft Matter 3:168–177, 2007.

    Article  Google Scholar 

  46. Saeidi, N., E. A. Sander, and J. W. Ruberti. Dynamic shear-influenced collagen self-assembly. Biomaterials 30:6581–6592, 2009.

    Article  Google Scholar 

  47. Sales, A., A. W. Holle, and R. Kemkemer. Initial contact guidance during cell spreading is contractility-independent. Soft Matter 13:5158–5167, 2017.

    Article  Google Scholar 

  48. Singh, S., S. B. Bandini, P. E. Donnelly, J. Schwartz, and J. E. Schwarzbauer. A cell-assembled, spatially aligned extracellular matrix to promote directed tissue development. J. Mater. Chem. B 2:1449–1453, 2014.

    Article  Google Scholar 

  49. Sun, M., A. Stetco, and E. F. Merschrod. Surface-templated formation of protein microfibril arrays. Langmuir 24:5418–5421, 2008.

    Article  Google Scholar 

  50. Teixeira, A. I., G. A. Abrams, P. J. Bertics, C. J. Murphy, and P. F. Nealey. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116:1881–1892, 2003.

    Article  Google Scholar 

  51. Tonazzini, I., S. Meucci, P. Faraci, F. Beltram, and M. Cecchini. Neuronal differentiation on anisotropic substrates and the influence of nanotopographical noise on neurite contact guidance. Biomaterials 34:6027–6036, 2013.

    Article  Google Scholar 

  52. Wang, J., J. W. Petefish, A. C. Hillier, and I. C. Schneider. Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells. Langmuir 31:307–314, 2015.

    Article  Google Scholar 

  53. Wang, J., and I. C. Schneider. Myosin phosphorylation on stress fibers predicts contact guidance behavior across diverse breast cancer cells. Biomaterials 120:81–93, 2017.

    Article  Google Scholar 

  54. Worthen, D. M., P. H. Cleveland, J. R. Slight, and J. Abare. Selective binding-affinity of human-plasma fibronectin for the collagens I-IV. Investig. Ophthalmol. Vis. Sci. 26:1740–1744, 1985.

    Google Scholar 

  55. Wyckoff, J. B., S. E. Pinner, S. Gschmeissner, J. S. Condeelis, and E. Sahai. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16:1515–1523, 2006.

    Article  Google Scholar 

  56. Yang, D. L., F. X. Zeng, M. Sun, W. H. Gu, and L. Li. Investigation on properties of collagen nanowires quasiepitaxially grown on mica lattice plane. Chin. J. Anal. Chem. 45:465–469, 2017.

    Article  Google Scholar 

  57. Zarrabi, K., A. Dufour, J. Li, C. Kuscu, A. Pulkoski-Gross, J. Z. Zhi, Y. J. Hu, N. S. Sampson, S. Zucker, and J. Cao. Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. J. Biol. Chem. 286:33167–33177, 2011.

    Article  Google Scholar 

  58. Zhou, Z. N., V. P. Sharma, B. T. Beaty, M. Roh-Johnson, E. A. Peterson, N. Van Rooijen, P. A. Kenny, H. S. Wiley, J. S. Condeelis, and J. E. Segall. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo. Oncogene 33:3784–3793, 2014.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Zhiqi Yao and Andrew Hillier with help on the AFM imaging and Jacob Nuhn for help with the MMP assays.

Funding

This work was supported by the National Institutes of Health/National Institute for General Medical Sciences [R01GM115672]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflict of interest

Juan Wang, Anuraag Boddupalli, Joseph Koelbl, Dong Hyun Nam, Xin Ge, Kaitlin M. Bratlie and Ian C. Schneider state they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian C. Schneider.

Additional information

Associate Editors Daniel Fletcher and Michael R. King oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Boddupalli, A., Koelbl, J. et al. Degradation and Remodeling of Epitaxially Grown Collagen Fibrils. Cel. Mol. Bioeng. 12, 69–84 (2019). https://doi.org/10.1007/s12195-018-0547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-018-0547-6

Keywords

Navigation