Skip to main content
Log in

Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Intrinsic cell chirality has been implicated in the left–right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CW:

Clockwise

CCW:

Counterclockwise

NC:

Non-chiral

References

  1. Andrew, D. J., and A. J. Ewald. Morphogenesis of epithelial tubes: insights into tube formation, elongation, and elaboration. Dev. Biol. 341:34–55, 2010.

    Article  Google Scholar 

  2. Aylsworth, A. S. Clinical aspects of defects in the determination of laterality. Am. J. Med. Genet. 101:345–355, 2001.

    Article  Google Scholar 

  3. Balcarova-Stander, J., S. E. Pfeiffer, S. D. Fuller, and K. Simons. Development of cell surface polarity in the epithelial Madin–Darby canine kidney (MDCK) cell line. EMBO J. 3:2687–2694, 1984.

    Google Scholar 

  4. Callander, D. C., M. R. Alcorn, B. Birsoy, and J. H. Rothman. Natural reversal of left-right gut/gonad asymmetry in C. elegans males is independent of embryonic chirality. Genesis 52:581–587, 2014.

    Article  Google Scholar 

  5. Chen, T. H., J. J. Hsu, X. Zhao, C. Guo, M. N. Wong, Y. Huang, Z. Li, A. Garfinkel, C. M. Ho, Y. Tintut, and L. L. Demer. Left-right symmetry breaking in tissue morphogenesis via cytoskeletal mechanics. Circ. Res. 110:551–559, 2012.

    Article  Google Scholar 

  6. Dahl, K. N., A. J. Ribeiro, and J. Lammerding. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102:1307–1318, 2008.

    Article  Google Scholar 

  7. Dalby, M. J., M. O. Riehle, S. J. Yarwood, C. D. Wilkinson, and A. S. Curtis. Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp. Cell Res. 284:274–282, 2003.

    Article  Google Scholar 

  8. Desai, R. A., L. Gao, S. Raghavan, W. F. Liu, and C. S. Chen. Cell polarity triggered by cell-cell adhesion via E-cadherin. J. Cell Sci. 122:905–911, 2009.

    Article  Google Scholar 

  9. Dupin, I., E. Camand, and S. Etienne-Manneville. Classical cadherins control nucleus and centrosome position and cell polarity. J. Cell Biol. 185:779–786, 2009.

    Article  Google Scholar 

  10. Engelhardt, B., and H. Wolburg. Mini-review: transendothelial migration of leukocytes: through the front door or around the side of the house? Eur. J. Immunol. 34:2955–2963, 2004.

    Article  Google Scholar 

  11. Freytes, D. O., L. Q. Wan, and G. Vunjak-Novakovic. Geometry and force control of cell function. J. Cell. Biochem. 108:1047–1058, 2009.

    Article  Google Scholar 

  12. Hatori, R., T. Ando, T. Sasamura, N. Nakazawa, M. Nakamura, K. Taniguchi, S. Hozumi, J. Kikuta, M. Ishii, and K. Matsuno. Left-right asymmetry is formed in individual cells by intrinsic cell chirality. Mech. Dev. 133:146–162, 2014.

    Article  Google Scholar 

  13. Itano, N., S. Okamoto, D. Zhang, S. A. Lipton, and E. Ruoslahti. Cell spreading controls endoplasmic and nuclear calcium: a physical gene regulation pathway from the cell surface to the nucleus. Proc. Natl. Acad. Sci. USA 100:5181–5186, 2003.

    Article  Google Scholar 

  14. Jiang, X., D. A. Bruzewicz, A. P. Wong, M. Piel, and G. M. Whitesides. Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci. USA 102:975–978, 2005.

    Article  Google Scholar 

  15. Johnson-Leger, C., M. Aurrand-Lions, and B. A. Imhof. The parting of the endothelium: miracle, or simply a junctional affair? J. Cell Sci. 113:921–933, 2000.

    Google Scholar 

  16. Karlon, W. J., P. P. Hsu, S. Li, S. Chien, A. D. McCulloch, and J. H. Omens. Measurement of orientation and distribution of cellular alignment and cytoskeletal organization. Ann. Biomed. Eng. 27:712–720, 1999.

    Article  Google Scholar 

  17. Khatau, S. B., R. J. Bloom, S. Bajpai, D. Razafsky, S. Zang, A. Giri, P.-H. Wu, J. Marchand, A. Celedon, and C. M. Hale. The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci. Rep. 2:488, 2012.

    Article  Google Scholar 

  18. Khatau, S. B., C. M. Hale, P. J. Stewart-Hutchinson, M. S. Patel, C. L. Stewart, P. C. Searson, D. Hodzic, and D. Wirtz. A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. USA 106:19017–19022, 2009.

    Article  Google Scholar 

  19. Kim, D.-H., S. Cho, and D. Wirtz. Tight coupling between nucleus and cell migration through the perinuclear actin cap. J. Cell Sci. 127:2528–2541, 2014.

    Article  Google Scholar 

  20. Kvietys, P. R., and M. Sandig. Neutrophil diapedesis: paracellular or transcellular? News Physiol. Sci. 16:15–19, 2001.

    Google Scholar 

  21. Lauffenburger, D. A., and A. F. Horwitz. Cell migration: a physically integrated molecular process. Cell 84:359–369, 1996.

    Article  Google Scholar 

  22. Levin, M. Left-right asymmetry in embryonic development: a comprehensive review. Mech. Dev. 122:3–25, 2005.

    Article  Google Scholar 

  23. Levin, M., T. Thorlin, K. R. Robinson, T. Nogi, and M. Mercola. Asymmetries in H +/K + -ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111:77–89, 2002.

    Article  Google Scholar 

  24. Lovett, D. B., N. Shekhar, J. A. Nickerson, K. J. Roux, and T. P. Lele. Modulation of Nuclear Shape by Substrate Rigidity. Cell. Mol. Bioeng. 6:230–238, 2013.

    Article  Google Scholar 

  25. Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. USA 94:849–854, 1997.

    Article  Google Scholar 

  26. Mercola, M., and M. Levin. Left-right asymmetry determination in vertebrates. Annu. Rev. Cell Dev. Biol. 17:779–805, 2001.

    Article  Google Scholar 

  27. Nakaya, Y., and G. Sheng. EMT in developmental morphogenesis. Cancer Lett. 341:9–15, 2013.

    Article  Google Scholar 

  28. Okada, Y., S. Takeda, Y. Tanaka, and J. C. Izpisua. Belmonte and N. Hirokawa. Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121:633–644, 2005.

    Article  Google Scholar 

  29. Raymond, Jr, M. J., P. Ray, G. Kaur, A. V. Singh, and L. Q. Wan. Cellular and nuclear alignment analysis for determining epithelial cell chirality. Ann. Biomed. Eng. 44(5):1475–1486, 2015.

    Article  Google Scholar 

  30. Ridley, A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz. Cell migration: integrating signals from front to back. Science 302:1704–1709, 2003.

    Article  Google Scholar 

  31. Roychoudhuri, R., V. Putcha, and H. Moller. Cancer and laterality: a study of the five major paired organs (UK). Cancer Cause. Control 17:655–662, 2006.

    Article  Google Scholar 

  32. Sandson, T. A., P. Y. Wen, and M. LeMay. Reversed cerebral asymmetry in women with breast cancer. Lancet 339:523–524, 1992.

    Article  Google Scholar 

  33. Shibazaki, Y., M. Shimizu, and R. Kuroda. Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr. Biol. 14:1462–1467, 2004.

    Article  Google Scholar 

  34. Simons, K., and S. D. Fuller. Cell surface polarity in epithelia. Annu. Rev. Cell Biol. 1:243–288, 1985.

    Article  Google Scholar 

  35. Singh, A. V., K. K. Mehta, K. Worley, J. S. Dordick, R. S. Kane, and L. Q. Wan. Carbon nanotube-induced loss of multicellular chirality on micropatterned substrate is mediated by oxidative stress. ACS Nano 8:2196–2205, 2014.

    Article  Google Scholar 

  36. Taniguchi, K., R. Maeda, T. Ando, T. Okumura, N. Nakazawa, R. Hatori, M. Nakamura, S. Hozumi, H. Fujiwara, and K. Matsuno. Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis. Science 333:339–341, 2011.

    Article  Google Scholar 

  37. Tee, Y. H., T. Shemesh, V. Thiagarajan, R. F. Hariadi, K. L. Anderson, C. Page, N. Volkmann, D. Hanein, S. Sivaramakrishnan, M. M. Kozlov, and A. D. Bershadsky. Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat. Cell Biol. 17:445–457, 2015.

    Article  Google Scholar 

  38. Thery, M., V. Racine, M. Piel, A. Pepin, A. Dimitrov, Y. Chen, J. B. Sibarita, and M. Bornens. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. USA 103:19771–19776, 2006.

    Article  Google Scholar 

  39. Vandenberg, L. N., and M. Levin. A unified model for left–right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev. Biol. 379:1–15, 2013.

    Article  Google Scholar 

  40. Versaevel, M., T. Grevesse, and S. Gabriele. Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat. Commun. 3:671, 2012.

    Article  Google Scholar 

  41. Vicente-Manzanares, M., D. J. Webb, and A. R. Horwitz. Cell migration at a glance. J. Cell Sci. 118:4917–4919, 2005.

    Article  Google Scholar 

  42. Vogel, V., and M. Sheetz. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:265–275, 2006.

    Article  Google Scholar 

  43. Wagner, J. G., and R. A. Roth. Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacol. Rev. 52:349–374, 2000.

    Google Scholar 

  44. Wakida, N. M., E. L. Botvinick, J. Lin, and M. W. Berns. An intact centrosome is required for the maintenance of polarization during directional cell migration. PLoS One 5:e15462, 2010.

    Article  Google Scholar 

  45. Wan, L. Q., S. M. Kang, G. Eng, W. L. Grayson, X. L. Lu, B. Huo, J. Gimble, X. E. Guo, V. C. Mow, and G. Vunjak-Novakovic. Geometric control of human stem cell morphology and differentiation. Integr. Biol. 2:346–353, 2010.

    Article  Google Scholar 

  46. Wan, L. Q., K. Ronaldson, M. Guirguis, and G. Vunjak-Novakovic. Micropatterning of cells reveals chiral morphogenesis. Stem Cell Res. Ther. 4:24, 2013.

    Article  Google Scholar 

  47. Wan, L. Q., K. Ronaldson, M. Park, G. Taylor, Y. Zhang, J. M. Gimble, and G. Vunjak-Novakovic. Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proc. Natl. Acad. Sci. USA 108:12295–12300, 2011.

    Article  Google Scholar 

  48. Wan, L. Q., and G. Vunjak-Novakovic. Micropatterning chiral morphogenesis. Commun. Integr. Biol. 4:745–748, 2011.

    Article  Google Scholar 

  49. Weber, G. F., M. A. Bjerke, and D. W. DeSimone. A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev. Cell 22:104–115, 2012.

    Article  Google Scholar 

  50. Worley, K., A. Certo, and L. Q. Wan. Geometry-force control of stem cell fate. BioNanoScience 3:43–51, 2013.

    Article  Google Scholar 

  51. Worley, K. E., D. Shieh, and L. Q. Wan. Inhibition of cell-cell adhesion impairs directional epithelial migration on micropatterned surfaces. Integr. Biol. 7(5):580–590, 2015.

    Article  Google Scholar 

  52. Xu, J., A. Van Keymeulen, N. M. Wakida, P. Carlton, M. W. Berns, and H. R. Bourne. Polarity reveals intrinsic cell chirality. Proc. Natl. Acad. Sci. USA 104:9296–9300, 2007.

    Article  Google Scholar 

  53. Yamanaka, H., and S. Kondo. Rotating pigment cells exhibit an intrinsic chirality. Genes Cells 20:29–35, 2015.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Parker Haynes for his help on Python coding. The authors would like to thank National Institutes of Health, National Science Foundation, American Heart Association, and March of Dimes for funding Support. Leo Q. Wan is a Pew Scholar in Biomedical Sciences, supported by the Pew Charitable Trusts.

Conflict of interest

All authors, Michael J. Raymond, Poulomi Ray, Gurleen Kaur, Michael Fredericks, Ajay V. Singh, and Leo Q. Wan, declare that they have no conflict of interest.

Statements of Human and Animal Rights and Informed Consent

No human or animal research was conducted in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Q. Wan.

Additional information

Associate Editor Partha Roy oversaw the review of this article.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 11433 kb)

Supplementary material 2 (DOCX 609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raymond, M.J., Ray, P., Kaur, G. et al. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality. Cel. Mol. Bioeng. 10, 63–74 (2017). https://doi.org/10.1007/s12195-016-0467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-016-0467-2

Keywords

Navigation