Skip to main content
Log in

Endothelial Cell Membrane Sensitivity to Shear Stress is Lipid Domain Dependent

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Blood flow-associated shear stress causes physiological and pathophysiological biochemical processes in endothelial cells that may be initiated by alterations in plasma membrane lipid domains characterized as liquid-ordered (lo), such as rafts or caveolae, or liquid-disordered (ld). To test for domain–dependent shear sensitivity, we used time-correlated single photon counting instrumentation to assess the photophysics and dynamics of the domain-selective lipid analogues DiI-C12 and DiI-C18 in endothelial cells subjected to physiological fluid shear stress. Under static conditions, DiI-C12 fluorescence lifetime was less than DiI-C18 lifetime and the diffusion coefficient of DiI-C12 was greater than the DiI-C18 diffusion coefficient, confirming that DiI-C12 probes ld, a more fluid membrane environment, and DiI-C18 probes the lo phase. Domains probed by DiI-C12 exhibited an early (10 s) and transient decrease of fluorescence lifetime after the onset of shear while domains probed by DiI-C18 exhibited a delayed decrease of fluorescence lifetime that was sustained for the 2 min the cells were subjected to flow. The diffusion coefficient of DiI-C18 increased after shear imposition, while that of DiI-C12 remained constant. Determination of the number of molecules (N) in the control volume suggested that DiI-C12-labeled domains increased in N immediately after step-shear, while N for DiI-C18-stained membrane transiently decreased. These results demonstrate that membrane microdomains are differentially sensitive to fluid shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Almeida, P. F., W. L. Vaz, and T. E. Thompson. Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31:6739–6747, 1992.

    Article  Google Scholar 

  2. Anderson, R. G., and K. Jacobson. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296:1821–1825, 2002.

    Article  Google Scholar 

  3. Bacia, K., D. Scherfeld, N. Kahya, and P. Schwille. Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys. J. 87:1034–1043, 2004.

    Article  Google Scholar 

  4. Bao, X., C. B. Clark, and J. A. Frangos. Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos, and connexin43. Am. J. Physiol. Heart Circ. Physiol. 278:H1598–H1605, 2000.

    Google Scholar 

  5. Barbee, K. A. Role of subcellular shear-stress distributions in endothelial cell mechanotransduction. Ann. Biomed. Eng. 30:472–482, 2002.

    Article  Google Scholar 

  6. Becker, W., A. Bergmann, E. Haustein, Z. Petrasek, P. Schwille, C. Biskup, L. Kelbauskas, K. Benndorf, N. Klocker, T. Anhut, I. Riemann, and K. Konig. Fluorescence lifetime images and correlation spectra obtained by multidimensional time-correlated single photon counting. Microsc. Res. Tech. 69:186–195, 2006.

    Article  Google Scholar 

  7. Benda, A., V. Fagul’ova, A. Deyneka, J. Enderlein, and M. Hof. Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: new perspectives in supported phospholipid bilayer research. Langmuir 22:9580–9585, 2006.

    Article  Google Scholar 

  8. Brown, D. A., and E. London. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun. 240:1–7, 1997.

    Article  Google Scholar 

  9. Brown, D. A., and J. K. Rose. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544, 1992.

    Article  Google Scholar 

  10. Butler, P. J., G. Norwich, S. Weinbaum, and S. Chien. Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am. J. Physiol. Cell Physiol. 280:C962–C969, 2001.

    Google Scholar 

  11. Butler, P. J., T. C. Tsou, J. Y. Li, S. Usami, and S. Chien. Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: a role for membrane perturbation in shear-induced MAPK activation. FASEB J. 16:216–218, 2002.

    Google Scholar 

  12. Chachisvilis, M., Y. L. Zhang, and J. A. Frangos. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc. Natl. Acad. Sci. USA 103:15463–15468, 2006.

    Article  Google Scholar 

  13. Cooke, J. P., E. Rossitch, Jr., N. A. Andon, J. Loscalzo, and V. J. Dzau. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J. Clin. Invest. 88:1663–1671, 1991.

    Article  Google Scholar 

  14. Damiano, E. R., D. S. Long, and M. L. Smith. Estimation of viscosity profiles using velocimetry data from parallel flows of linearly viscous fluids: application to microvascular haemodynamics. J. Fluid Mech. 512:1–19, 2004.

    Article  MATH  Google Scholar 

  15. Dangaria, J. H., and P. J. Butler. Macrorheology and adaptive microrheology of endothelial cells subjected to fluid shear stress. Am. J. Physiol. Cell Physiol. 293:C1568–C1575, 2007.

    Article  Google Scholar 

  16. Davey, A. M., R. P. Walvick, Y. X. Liu, A. A. Heikal, and E. D. Sheets. Membrane order and molecular dynamics associated with IgE receptor cross-linking in mast cells. Biophys. J. 92:343–355, 2007.

    Article  Google Scholar 

  17. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    Google Scholar 

  18. Davies, P. F. Overview: temporal and spatial relationships in shear stress-mediated endothelial signalling. J. Vasc. Res. 34:208–211, 1997.

    Article  Google Scholar 

  19. dePaola, N., M. A. Gimbrone, Jr., P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257, 1992.

    Google Scholar 

  20. Dimitrov, D. S., and M. I. Angelova. Electric-field mediated lipid swelling and liposome formation. Studia Biophysica 119:61–65, 1987.

    Google Scholar 

  21. Duncan, R. R., A. Bergmann, M. A. Cousin, D. K. Apps, and M. J. Shipston. Multi-dimensional time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells. J. Microsc.-Oxford 215:1–12, 2004.

    Article  MathSciNet  Google Scholar 

  22. Elson, E. L., and D. Magde. Fluorescence correlation spectroscopy. 1. Conceptual basis and theory. Biopolymers 13:1–27, 1974.

    Article  Google Scholar 

  23. Ferko, M. C., B. P. Patterson, and P. J. Butler. High-resolution solid modeling of biological samples imaged with 3D fluorescence microscopy. Mic. Res. Tech. 69(8):648–655, 2006.

    Article  Google Scholar 

  24. Ferko, M. C., A. Bhatnagar, M. B. Garcia, and P. J. Butler. Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells. Ann. Biomed. Eng. 35:208–223, 2007.

    Article  Google Scholar 

  25. Florian, J. A., J. R. Kosky, K. Ainslie, Z. Pang, R. O. Dull, and J. M. Tarbell. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 93:e136–e142, 2003.

    Article  Google Scholar 

  26. Frangos, J. A., T. Y. Huang, and C. B. Clark. Steady shear and step changes in shear stimulate endothelium via independent mechanisms—superposition of transient and sustained nitric oxide production. Biochem. Biophys. Res. Commun. 224:660–665, 1996.

    Article  Google Scholar 

  27. Fujiwara, K., M. Masuda, M. Osawa, Y. Kano, and K. Katoh. Is PECAM-1 a mechanoresponsive molecule? Cell Struct. Funct. 26:11–17, 2001.

    Article  Google Scholar 

  28. Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40:317–330, 1998.

    Article  Google Scholar 

  29. Girard, P. R., and R. M. Nerem. Endothelial cell signaling and cytoskeletal changes in response to shear stress. Front Med. Biol. Eng. 5:31–36, 1993.

    Google Scholar 

  30. Goligorsky, M. S. Mechanical stimulation induces Ca2+i transients and membrane depolarization in cultured endothelial cells. Effects on Ca2+i in co-perfused smooth muscle cells. FEBS Lett. 240:59–64, 1988.

    Article  Google Scholar 

  31. Gudi, S. R., C. B. Clark, and J. A. Frangos. Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ. Res. 79:834–839, 1996.

    Google Scholar 

  32. Gullapalli, R. R., T. Tabouillot, R. Mathura, J. H. Dangaria, and P. J. Butler. Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology. J. Biomed. Opt. 12:014012, 2007.

    Article  Google Scholar 

  33. Gullapalli, R. R., M. C. Demirel, and P. J. Butler. Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer. Phys. Chem. Chem. Phys. 10:3548–3560, 2008.

    Article  Google Scholar 

  34. Hao, M., S. Mukherjee, and F. R. Maxfield. Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc. Natl. Acad. Sci. USA 98:13072–13077, 2001.

    Article  Google Scholar 

  35. Hess, S. T., and W. W. Webb. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys. J. 83:2300–2317, 2002.

    Article  Google Scholar 

  36. Huang, L., P. S. Mathieu, and B. P. Helmke. A stretching device for high-resolution live-cell imaging. Ann. Biomed. Eng. 38:1728–1740, 2010.

    Article  Google Scholar 

  37. Jacobs, E. R., C. Cheliakine, D. Gebremedhin, E. K. Birks, P. F. Davies, and D. R. Harder. Shear activated channels in cell-attached patches of cultured bovine aortic endothelial cells. Pflugers Arch. 431:129–131, 1995.

    Article  Google Scholar 

  38. Kahya, N., D. Scherfeld, K. Bacia, and P. Schwille. Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy. J. Struct. Biol. 147:77–89, 2004.

    Article  Google Scholar 

  39. Kenworthy, A. K., B. J. Nichols, C. L. Remmert, G. M. Hendrix, M. Kumar, J. Zimmerberg, and J. Lippincott-Schwartz. Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 165:735–746, 2004.

    Article  Google Scholar 

  40. Klausner, R. D., and D. E. Wolf. Selectivity of fluorescent lipid analogues for lipid domains. Biochemistry 19:6199–6203, 1980.

    Article  Google Scholar 

  41. Korlach, J., P. Schwille, W. W. Webb, and G. W. Feigenson. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA 96:8461–8466, 1999.

    Article  Google Scholar 

  42. Kusumi, A., and K. Suzuki. Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim. Biophys. Acta 1746:234–251, 2005.

    Article  Google Scholar 

  43. Lakowicz, J. R. Principles of Fluorescence Spectroscopy. Springer, 1999.

  44. LaMack, J. A., and M. H. Friedman. Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am. J. Physiol. Heart Circ. Physiol. 293:H2853–H2859, 2007.

    Article  Google Scholar 

  45. Levitan, I., A. E. Christian, T. N. Tulenko, and G. H. Rothblat. Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J. Gen. Physiol. 115:405–416, 2000.

    Article  Google Scholar 

  46. Li, S., M. Kim, Y. L. Hu, S. Jalali, D. D. Schlaepfer, T. Hunter, S. Chien, and J. Y. Shyy. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J. Biol. Chem. 272:30455–30462, 1997.

    Article  Google Scholar 

  47. Li, S., P. Butler, Y. X. Wang, Y. L. Hu, D. C. Han, S. Usami, J. L. Guan, and S. Chien. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc. Natl. Acad. Sci. USA 99:3546–3551, 2002.

    Article  Google Scholar 

  48. Loura, L. M., A. Fedorov, and M. Prieto. Partition of membrane probes in a gel/fluid two-component lipid system: a fluorescence resonance energy transfer study. Biochim. Biophys. Acta 1467:101–112, 2000.

    Article  Google Scholar 

  49. Magde, D., E. L. Elson, and W. W. Webb. Fluorescence correlation spectroscopy. 2. Experimental realization. Biopolymers 13:29–61, 1974.

    Article  Google Scholar 

  50. Milon, S., R. Hovius, H. Vogel, and T. Wohland. Factors influencing fluorescence correlation spectroscopy measurements on membranes: simulations and experiments. Chem. Phys. 288:171–186, 2003.

    Article  Google Scholar 

  51. Mochizuki, S., H. Vink, O. Hiramatsu, T. Kajita, F. Shigeto, J. A. Spaan, and F. Kajiya. Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am. J. Physiol. Heart Circ. Physiol. 285:H722–H726, 2003.

    Google Scholar 

  52. Ohno, M., G. H. Gibbons, V. J. Dzau, and J. P. Cooke. Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling. Circulation 88:193–197, 1993.

    Google Scholar 

  53. Olesen, S. P., D. E. Clapham, and P. F. Davies. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170, 1988.

    Article  Google Scholar 

  54. Orr, A. W., B. P. Helmke, B. R. Blackman, and M. A. Schwartz. Mechanisms of mechanotransduction. Dev. Cell 10:11–20, 2006.

    Article  Google Scholar 

  55. Packard, B. S., and D. E. Wolf. Fluorescence lifetimes of carbocyanine lipid analogues in phospholipid bilayers. Biochemistry 24:5176–5181, 1985.

    Article  Google Scholar 

  56. Pahakis, M. Y., J. R. Kosky, R. O. Dull, and J. M. Tarbell. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem. Biophys. Res. Commun. 355:228–233, 2007.

    Article  Google Scholar 

  57. Park, H., Y. M. Go, R. Darji, J. W. Choi, M. P. Lisanti, M. C. Maland, and H. Jo. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. Am. J. Physiol. Heart Circ. Physiol. 278:H1285–H1293, 2000.

    Google Scholar 

  58. Potter, D. R., and E. R. Damiano. The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ. Res. 102:770–776, 2008.

    Article  Google Scholar 

  59. Rizzo, V., A. Sung, P. Oh, and J. E. Schnitzer. Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J. Biol. Chem. 273:26323–26329, 1998.

    Article  Google Scholar 

  60. Schwille, P., J. Korlach, and W. W. Webb. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–182, 1999.

    Article  Google Scholar 

  61. Secomb, T. W., R. Hsu, and A. R. Pries. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38:143–150, 2001.

    Google Scholar 

  62. Seong, J., S. Lu, M. Ouyang, H. Huang, J. Zhang, M. C. Frame, and Y. Wang. Visualization of Src activity at different compartments of the plasma membrane by FRET imaging. Chem. Biol. 16:48–57, 2009.

    Article  Google Scholar 

  63. Sheets, E. D., G. M. Lee, R. Simson, and K. Jacobson. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry 36:12449–12458, 1997.

    Article  Google Scholar 

  64. Sigurdson, W. J., F. Sachs, and S. L. Diamond. Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium. Am. J. Physiol. 264:H1745–H1752, 1993.

    Google Scholar 

  65. Sorscher, S. M., and M. P. Klein. Profile of a focused collimated laser-beam near the focal minimum characterized by fluorescence correlation spectroscopy. Rev. Sci. Instrum. 51:98–102, 1980.

    Article  Google Scholar 

  66. Spink, C. H., M. D. Yeager, and G. W. Feigenson. Partitioning behavior of indocarbocyanine probes between coexisting gel and fluid phases in model membranes. Biochim. Biophys. Acta 1023:25–33, 1990.

    Article  Google Scholar 

  67. Squire, J. M., M. Chew, G. Nneji, C. Neal, J. Barry, and C. Michel. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Biol. 136:239–255, 2001.

    Article  Google Scholar 

  68. Tabouillot, T., R. R. Gullapalli, and P. J. Butler. Monitoring cellular mechanosensing using time-correlated single photon counting. Proc.SPIE 6372, 63720D. 2006. Ref Type: Conference Proceeding.

  69. Tarbell, J. M., and M. Y. Pahakis. Mechanotransduction and the glycocalyx. J. Intern. Med. 259:339–350, 2006.

    Article  Google Scholar 

  70. Thi, M. M., J. M. Tarbell, S. Weinbaum, and D. C. Spray. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc. Natl. Acad. Sci. USA 101:16483–16488, 2004.

    Article  Google Scholar 

  71. Tzima, E. Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circ. Res. 98:176–185, 2006.

    Article  Google Scholar 

  72. Ueki, Y., N. Sakamoto, T. Ohashi, and M. Sato. Morphological responses of vascular endothelial cells induced by local stretch transmitted through intercellular junctions. Exp. Mech. 49:125–134, 2009.

    Article  Google Scholar 

  73. Ueki, Y., N. Sakamoto, and M. Sato. Direct measurement of shear strain in adherent vascular endothelial cells exposed to fluid shear stress. Biochem. Biophys. Res. Commun. 394:94–99, 2010.

    Article  Google Scholar 

  74. Vijayagopal, P., S. R. Srinivasan, E. R. Dalferes, Jr., B. Radhakrishnamurthy, and G. S. Berenson. Effect of low-density lipoproteins on the synthesis and secretion of proteoglycans by human endothelial cells in culture. Biochem. J. 255:639–646, 1988.

    Google Scholar 

  75. Wawrezinieck, L., H. Rigneault, D. Marguet, and P. F. Lenne. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89:4029–4042, 2005.

    Article  Google Scholar 

  76. Weinbaum, S., X. Zhang, Y. Han, H. Vink, and S. C. Cowin. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA 100:7988–7995, 2003.

    Article  Google Scholar 

  77. Widengren, J., and R. Rigler. Photobleaching investigations of dyes using fluorescence correlation spectroscopy (FCS). Prog. Biophys. Mol. Biol. 65:H109, 1996.

    Google Scholar 

  78. Widengren, J., U. Mets, and R. Rigler. Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J. Phys. Chem. 99:13368–13379, 1995.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to PJB from the National Heart Lung and Blood Institute (R01 HL 07754201-A1) and the National Science Foundation (BES 0238910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Butler.

Additional information

Associate Editor Edward Guo oversaw the review of this article.

Tristan Tabouillot and Hari S. Muddana contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabouillot, T., Muddana, H.S. & Butler, P.J. Endothelial Cell Membrane Sensitivity to Shear Stress is Lipid Domain Dependent. Cel. Mol. Bioeng. 4, 169–181 (2011). https://doi.org/10.1007/s12195-010-0136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0136-9

Keywords

Navigation