Skip to main content

Advertisement

Log in

Effects of Axial Stretch on Cell Proliferation and Intimal Thickness in Arteries in Organ Culture

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Intimal hyperplasia (IH) remains the major cause of intermediate and long-term failure of vascular grafts and endovascular interventions. Arteries are subjected to a significant longitudinal stress in addition to the shear stress and tensile stress from the blood flow. The aim of this study was to determine the effect of axial stretch on cell proliferation and IH in arteries. Porcine carotid arteries, intact or endothelial cell (EC) denudated, were maintained ex vivo at different stretch ratios (1.3, 1.5, and 1.8) and flow rates (16 or 160 mL/min) while remaining at physiologic pressure for 7 days. The viability of the arteries was verified with norepinephrine, carbachol, and sodium nitroprusside stimulations, and the cell proliferation was detected using bromodeoxyuridine labeling and immunostaining. Our results showed that the axial stretch ratio did not significantly affect intimal thickness and cell proliferation in normal arteries. However, axial stretch increased the neointimal thickness in EC denudated arteries cultured under low flow conditions. The cell proliferation increased significantly in the intima and inner half of the media of the EC denudated arteries under normal or elevated axial stretch in comparison to intact arteries at the same stretch ratio. These results demonstrated that axial stretch with EC denudation and low flow increases neointimal formation and cell proliferation in the arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Bayes-Genis, A., B. Kantor, P. C. Keelan, J. D. Altman, D. F. Lubbe, J. H. Kang, and R. S. Schwartz. Restenosis and hyperplasia: animal models. Curr. Interv. Cardiol. Rep. 2(4):303–308, 2000.

    Google Scholar 

  2. Boonen, H. C., P. M. Schiffers, G. E. Fazzi, G. M. Janssen, M. J. Daemen, and J. G. De Mey. DNA synthesis in isolated arteries. Kinetics and structural consequences. Am. J. Physiol. 260(1 Pt 2):H210–H217, 1991.

    Google Scholar 

  3. Casterella, P. J., and P. S. Teirstein. Prevention of coronary restenosis. Cardiol. Rev. 7(4):219–231, 1999.

    Article  Google Scholar 

  4. Cheng, C. P., N. M. Wilson, R. L. Hallett, R. J. Herfkens, and C. A. Taylor. In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J. Vasc. Interv. Radiol. 17(6):979–987, 2006.

    Article  Google Scholar 

  5. Choi, G., L. K. Shin, C. A. Taylor, and C. P. Cheng. In vivo deformation of the human abdominal aorta and common iliac arteries with hip and knee flexion: implications for the design of stent-grafts. J. Endovasc. Ther. 16(5):531–538, 2009.

    Article  Google Scholar 

  6. Conklin, B. S., S. M. Surowiec, P. H. Lin, and C. Chen. A simple physiologic pulsatile perfusion system for the study of intact vascular tissue. Med. Eng. Phys. 22(6):441–449, 2000.

    Article  Google Scholar 

  7. Davis, N. P., H. C. Han, B. Wayman, and R. Vito. Sustained axial loading lengthens arteries in organ culture. Ann. Biomed. Eng. 33(7):867–877, 2005.

    Article  Google Scholar 

  8. Ding, Z., and M. H. Friedman. Quantification of 3-D coronary arterial motion using clinical biplane cineangiograms. Int. J. Card. Imaging 16(5):331–346, 2000.

    Article  Google Scholar 

  9. Drouilhet, III, J. C., F. Southern, D. K. Williams, A. T. Brown, J. Eidt, and M. M. Moursi. Increased intimal hyperplasia after carotid endarterectomy in spontaneously hypertensive rats. Vasc. Surg. 35(1):11–18, 2001.

    Google Scholar 

  10. El Hamamsy, I., L. M. Stevens, P. M. Vanhoutte, and L. P. Perrault. Injury of the coronary endothelium at implantation increases endothelial dysfunction and intimal hyperplasia after heart transplantation. J. Heart Lung Transplant. 24(3):251–258, 2005.

    Article  Google Scholar 

  11. Fridez, P., A. Makino, H. Miyazaki, J. J. Meister, K. Hayashi, and N. Stergiopulos. Short-term biomechanical adaptation of the rat carotid to acute hypertension: contribution of smooth muscle. Ann. Biomed. Eng. 29(1):26–34, 2001.

    Article  Google Scholar 

  12. Guerin, P., F. Rondeau, G. Grimandi, M. F. Heymann, D. Heymann, P. Pillet, O. Al Habash, G. Loirand, P. Pacaud, and D. Crochet. Neointimal hyperplasia after stenting in a human mammary artery organ culture. J. Vasc. Res. 41(1):46–53, 2004.

    Article  Google Scholar 

  13. Gyongyosi, M., P. Yang, A. Khorsand, and D. Glogar. Longitudinal straightening effect of stents is an additional predictor for major adverse cardiac events. Austrian Wiktor Stent Study Group and European Paragon Stent Investigators. J. Am. Coll. Cardiol. 35(6):1580–1589, 2000.

    Article  Google Scholar 

  14. Han, H. C. A biomechanical model of artery buckling. J. Biomech. 40(16):3672–3678, 2007.

    Article  Google Scholar 

  15. Han, H. C. Blood vessel buckling within soft surrounding tissue generates tortuosity. J. Biomech. 42(16):2797–2801, 2009.

    Article  Google Scholar 

  16. Han, H. C., and Y. C. Fung. Longitudinal strain of canine and porcine aortas. J. Biomech. 28(5):637–641, 1995.

    Article  Google Scholar 

  17. Han, H. C., and D. N. Ku. Contractile responses in arteries subjected to hypertensive pressure in seven-day organ culture. Ann. Biomed. Eng. 29(6):467–475, 2001.

    Article  Google Scholar 

  18. Han, H. C., D. N. Ku, and R. P. Vito. Arterial wall adaptation under elevated longitudinal stretch in organ culture. Ann. Biomed. Eng. 31(4):403–411, 2003.

    Article  Google Scholar 

  19. Han, H. C., S. Marita, and D. N. Ku. Changes of opening angle in hypertensive and hypotensive arteries in 3-day organ culture. J. Biomech. 39(13):2410–2418, 2006.

    Article  Google Scholar 

  20. Han, H. C., L. Zhao, M. Huang, L. S. Hou, Y. T. Huang, and Z. B. Kuang. Postsurgical changes of the opening angle of canine autogenous vein graft. J. Biomech. Eng. 120(2):211–216, 1998.

    Article  Google Scholar 

  21. Himburg, H. A., S. E. Dowd, and M. H. Friedman. Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am. J. Physiol. Heart Circ Physiol. 293(1):H645–H653, 2007.

    Article  Google Scholar 

  22. Jackson, Z. S., D. Dajnowiec, A. I. Gotlieb, and B. L. Langille. Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler. Thromb. Vasc. Biol. 25(5):957–962, 2005.

    Article  Google Scholar 

  23. Jackson, Z. S., A. I. Gotlieb, and B. L. Langille. Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90(8):918–925, 2002.

    Article  Google Scholar 

  24. Klein, A. J., S. J. Chen, J. C. Messenger, A. R. Hansgen, M. E. Plomondon, J. D. Carroll, and I. P. Casserly. Quantitative assessment of the conformational change in the femoropopliteal artery with leg movement. Catheter Cardiovasc. Interv. 74(5):787–798, 2009.

    Article  Google Scholar 

  25. Korshunov, V. A., and B. C. Berk. Flow-induced vascular remodeling in the mouse: a model for carotid intima-media thickening. Arterioscler. Thromb. Vasc. Biol. 23(12):2185–2191, 2003.

    Article  Google Scholar 

  26. Koyama, J., M. Owa, S. Sakurai, H. Shimada, H. Hikita, T. Higashikata, and S. Ikeda. Relation between vascular morphologic changes during stent implantation and the magnitude of in-stent neointimal hyperplasia. Am. J. Cardiol. 86(7):753–758, 2000.

    Article  Google Scholar 

  27. Kudo, T., F. A. Chandra, and S. S. Ahn. Long-term outcomes and predictors of iliac angioplasty with selective stenting. J. Vasc. Surg. 42(3):466–475, 2005.

    Article  Google Scholar 

  28. Langille, B. L., M. P. Bendeck, and F. W. Keeley. Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am. J. Physiol. Heart Circ. Physiol. 256(4):H931–H939, 1989.

    Google Scholar 

  29. Lee, Y. U., D. Drury-Stewart, R. P. Vito, and H. C. Han. Morphologic adaptation of arterial endothelial cells to longitudinal stretch in organ culture. J. Biomech. 41(15):3274–3277, 2008.

    Article  Google Scholar 

  30. Lee, Y. U., J. Luo, E. Sprague, and H. C. Han. Comparison of artery organ culture and co-culture models for studying endothelial cell migration and its effect on smooth muscle cell proliferation and migration. Ann. Biomed. Eng. 38(3):801–812, 2010.

    Article  Google Scholar 

  31. Lehoux, S., Y. Castier, and A. Tedgui. Molecular mechanisms of the vascular responses to haemodynamic forces. J. Intern. Med. 259(4):381–392, 2006.

    Article  Google Scholar 

  32. Longmore, J., and A. H. Weston. The role of K+ channels in the modulation of vascular smooth muscle tone. In: Potassium Channels: Structure, Classification, Function and Therapeutic Potential, edited by N. S. Cook. New York: John Wiley & Sons/Ellis Horwood, 1990, pp. 259–272.

  33. Loth, F., S. A. Jones, C. K. Zarins, D. P. Giddens, R. F. Nassar, S. Glagov, and H. S. Bassiouny. Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses. J. Biomech. Eng. 124(1):44–51, 2002.

    Article  Google Scholar 

  34. Lu, Y., Y. Huang, L. Zhao, R. Li, S. Kaijun, P. Ma, and X. Chu. Management of major arterial injuries of limbs: a study of 166 cases. Cardiovasc. Surg. 1(5):486–488, 1993.

    Google Scholar 

  35. Meng, X., K. Mavromatis, and Z. S. Galis. Mechanical stretching of human saphenous vein grafts induces expression and activation of matrix-degrading enzymes associated with vascular tissue injury and repair. Exp. Mol. Pathol. 66(3):227–237, 1999.

    Article  Google Scholar 

  36. Mitra, A. K., and D. K. Agrawal. In stent restenosis: bane of the stent era. J. Clin. Pathol. 59(3):232–239, 2006.

    Article  MathSciNet  Google Scholar 

  37. Nanjo, H., E. Sho, M. Komatsu, M. Sho, C. K. Zarins, and H. Masuda. Intermittent short-duration exposure to low wall shear stress induces intimal thickening in arteries exposed to chronic high shear stress. Exp. Mol. Pathol. 80(1):38–45, 2006.

    Google Scholar 

  38. Newby, A. C., and A. B. Zaltsman. Molecular mechanisms in intimal hyperplasia. J. Pathol. 190(3):300–309, 2000.

    Article  Google Scholar 

  39. Nichol, J. W., M. Petko, R. J. Myung, J. W. Gaynor, and K. J. Gooch. Hemodynamic conditions alter axial and circumferential remodeling of arteries engineered ex vivo. Ann. Biomed. Eng. 33(6):725–732, 2005.

    Article  Google Scholar 

  40. Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries: Theoretical, Experimental, and Clinical Principles, 4th edn, Chapter 4. London: Arnold, 1998

  41. Pannangpetch, P., and O. L. Woodman. The effect of ischaemia on endothelium-dependent vasodilatation and adrenoceptor-mediated vasoconstriction in rat isolated hearts. Br. J. Pharmacol. 117(6):1047–1052, 1996.

    Google Scholar 

  42. Pasterkamp, G., D. P. V. de Kleijn, and C. Borst. Arterial remodeling in atherosclerosis, restenosis and after alteration of blood flow: potential mechanisms and clinical implications. Cardiovasc. Res. 45(4):843–852, 2000.

    Article  Google Scholar 

  43. Sato, K., H. Ozaki, and H. Karaki. Differential effects of carbachol on cytosolic calcium levels in vascular endothelium and smooth muscle. J. Pharmacol. Exp. Ther. 255(1):114–119, 1990.

    Google Scholar 

  44. Stojnic, N., L. G. Bukarica, M. Peric, M. Bumbasirevic, A. Lesic, J. M. Lipkovski, and H. Heinle. Analysis of vasoreactivity of isolated human radial artery. J. Pharmacol. Sci. 100(1):34–40, 2006.

    Article  Google Scholar 

  45. Sumpio, B. E., A. J. Banes, L. G. Levin, and G. Johnson, Jr. Mechanical stress stimulates aortic endothelial cells to proliferate. J. Vasc. Surg. 6(3):252–256, 1987.

    Article  Google Scholar 

  46. Ward, M. R., P. S. Tsao, A. Agrotis, R. J. Dilley, G. L. Jennings, and A. Bobik. Low blood flow after angioplasty augments mechanisms of restenosis: inward vessel remodeling, cell migration, and activity of genes regulating migration. Arterioscler. Thromb. Vasc. Biol. 21(2):208–213, 2001.

    Google Scholar 

  47. Weintraub, W. S. The pathophysiology and burden of restenosis. Am. J. Cardiol. 100(5A):3K–9K, 2001.

    Google Scholar 

  48. Willis, A. I., D. Pierre-Paul, B. E. Sumpio, and V. Gahtan. Vascular smooth muscle cell migration: current research and clinical implications. Vasc. Endovasc. Surg. 38(1):11–23, 2004.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant GM008194-25S10080. It was also partially supported by NSF grant 0602834, Texas Higher Educational Coordinating Board grant 003659-0014-2006, and NSF of China Grant 10928206. The authors thank the Granzins at New Braunfels, TX and Wiatrek at Poth, TX for generously providing the arteries for this work and thank Dr. John Zhang’s lab, Dr. William W. Mogan, and Mr. Kurtis Johnson for their help in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Chao Han.

Additional information

Associate Editor Edward Guo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YU., Hayman, D., Sprague, E.A. et al. Effects of Axial Stretch on Cell Proliferation and Intimal Thickness in Arteries in Organ Culture. Cel. Mol. Bioeng. 3, 286–295 (2010). https://doi.org/10.1007/s12195-010-0128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0128-9

Keywords

Navigation