Skip to main content
Log in

Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Recent advances have led to the emergence of molecular biomechanics as an essential element of modern biology. These efforts focus on theoretical and experimental studies of the mechanics of proteins and nucleic acids, and the understanding of the molecular mechanisms of stress transmission, mechanosensing and mechanotransduction in living cells. In particular, single-molecule biomechanics studies of proteins and DNA, and mechanochemical coupling in biomolecular motors have demonstrated the critical importance of molecular mechanics as a new frontier in bioengineering and life sciences. To stimulate a more systematic study of the basic issues in molecular biomechanics, and attract a broader range of researchers to enter this emerging field, here we discuss its significance and relevance, describe the important issues to be addressed and the most critical questions to be answered, summarize both experimental and theoretical/computational challenges, and identify some short-term and long-term goals for the field. The needs to train young researchers in molecular biomechanics with a broader knowledge base, and to bridge and integrate molecular, subcellular and cellular level studies of biomechanics are articulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aksimentiev, A., I. A. Balabin, R. H. Fillingame, and K. Schulten. Insights into the molecular mechanism of rotation in the F-o sector of ATP synthase. Biophys. J. 86:1332–1344, 2004.

    Article  Google Scholar 

  2. Alexander, N. R., et al. Extracellular matrix rigidity promotes invadopodia activity. Curr. Biol. 18:1295–1299, 2008.

    Article  Google Scholar 

  3. Allen, F., et al. Blue Gene: a vision for protein science using a petaflop supercomputer. IBM Syst. J. 40:310–327, 2001.

    Article  Google Scholar 

  4. Autumn, K., and N. Gravish. Gecko adhesion: evolutionary nanotechnology. Philos. Trans. R. Soc. Lond. A 366:1575–1590, 2008.

    Article  Google Scholar 

  5. Bao, G. Mechanics of biomolecules. J. Mech. Phys. Solids 50:2237–2274, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, G., W. J. Rhee, and A. Tsourkas. Fluorescent probes for live-cell RNA detection. Annu. Rev. Biomed. Eng. 11:25–47, 2009.

    Article  Google Scholar 

  7. Bao, G., A. Tsourkas, and P. J. Santangelo. Engineering nanostructured probes for sensitive intracellular gene detection. Mech. Chem. Biosyst. 1:23–36, 2004.

    Google Scholar 

  8. Basson, M. D. An intracellular signal pathway that regulates cancer cell adhesion in response to extracellular forces. Cancer Res. 68:2–4, 2008.

    Article  Google Scholar 

  9. Bathe, M. A finite element framework for computation of protein normal modes and mechanical response. Proteins 70:1595–1609, 2008.

    Article  Google Scholar 

  10. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200:618–627, 1978.

    Article  Google Scholar 

  11. Bisgrove, B. W., and H. J. Yost. The roles of cilia in developmental disorders and disease. Development 133:4131–4143, 2006.

    Article  Google Scholar 

  12. Block, S. M., L. S. B. Goldstein, and B. J. Schnapp. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352, 1990.

    Article  Google Scholar 

  13. Brau, R. R., P. B. Tarsa, J. M. Ferrer, P. Lee, and M. J. Lang. Interlaced optical force-fluorescence measurements for single molecule biophysics. Biophys. J. 91:1069–1077, 2006.

    Article  Google Scholar 

  14. Brower-Toland, B. D., et al. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl Acad. Sci. USA 99:1960–1965, 2002.

    Article  Google Scholar 

  15. Chen, J., and J. A. Lopez. Interactions of platelets with subendothelium and endothelium. Microcirculation 12:235–246, 2005.

    Article  Google Scholar 

  16. Choquet, D., D. P. Felsenfeld, and M. P. Sheetz. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39–48, 1997.

    Article  Google Scholar 

  17. Davies, P. F., and S. C. Tripathi. Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ. Res. 72:239–245, 1993.

    Google Scholar 

  18. Dean, D. H., L. Han, C. Ortiz, and A. J. Grodzinsky. Nanoscale conformation and compressibility of cartilage aggrecan using micro-contact printing and atomic force microscopy. Macromolecules 38:4047–4049, 2005.

    Article  Google Scholar 

  19. Dembo, M., D. C. Torney, K. Saxman, and D. Hammer. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B Biol. Sci. 234:55–83, 1988.

    Article  Google Scholar 

  20. Deng, L., N. J. Fairbank, D. J. Cole, J. J. Fredberg, and G. N. Maksym. Airway smooth muscle tone modulates mechanically induced cytoskeletal stiffening and remodeling. J. Appl. Physiol. 99:634–641, 2005.

    Article  Google Scholar 

  21. Effler, J. C., P. A. Iglesias, and D. N. Robinson. A mechanosensory system controls cell shape changes during mitosis. Cell Cycle 6:30–35, 2007.

    Google Scholar 

  22. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  Google Scholar 

  23. Evans, E. Probing the relation between force—lifetime—and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30:105–128, 2001.

    Article  Google Scholar 

  24. Evans, E., K. Ritchie, and R. Merkel. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68:2580–2587, 1995.

    Article  Google Scholar 

  25. Fischer, T., A. Agarwal, and H. Hess. A smart dust biosensor powered by kinesin motors. Nat. Nanotechnol. 4:162–166, 2009.

    Article  Google Scholar 

  26. Florin, E. L., V. T. Moy, and H. E. Gaub. Adhesion forces between individual ligand–receptor pairs. Science 264:415–417, 1994.

    Article  Google Scholar 

  27. Furuike, S., T. Ito, and M. Yamazaki. Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett. 498:72–75, 2001.

    Article  Google Scholar 

  28. Gao, M., D. Craig, V. Vogel, and K. Schulten. Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics. J. Mol. Biol. 323:939–950, 2002.

    Article  Google Scholar 

  29. Gautam, M., A. Gojova, and A. I. Barakat. Flow-activated ion channels in vascular endothelium. Cell Biochem. Biophys. 46:277–284, 2006.

    Article  Google Scholar 

  30. Ghosh, K., et al. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc. Natl Acad. Sci. USA 105:11305–11310, 2008.

    Article  Google Scholar 

  31. Gullingsrud, J., and K. Schulten. Gating of MscL studied by steered molecular dynamics. Biophys. J. 85:2087–2099, 2003.

    Article  Google Scholar 

  32. Harris, P. C., and V. E. Torres. Understanding pathogenic mechanisms in polycystic kidney disease provides clues for therapy. Curr. Opin. Nephrol. Hypertens. 15:456–463, 2006.

    Article  Google Scholar 

  33. Hess, H., and V. Vogel. Molecular shuttles based on motor proteins: active transport in synthetic environments. J. Biotechnol. 82:67–85, 2001.

    Google Scholar 

  34. Hoffmann, C., G. Gaietta, M. Bünemann, S. R. Adams, S. Oberdorff-Maass, B. Behr, J. P. Vilardaga, R. Y. Tsien, M. H. Ellisman, and M. J. Lohse. A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat. Methods 2:171–176, 2005.

    Article  Google Scholar 

  35. Howard, J. Mechanical signaling in networks of motor and cytoskeletal proteins. Annu. Rev. Biophys. 38:217–234, 2009.

    Article  Google Scholar 

  36. Howie, H. L., M. Glogauer, and M. So. The N-gonorrhoeae type IV pilus stimulates mechanosensitive pathways and cytoprotection through a pilT-dependent mechanism. PLoS Biol. 3:627–637, 2005.

    Article  Google Scholar 

  37. Huang, W., and M. J. Lang. Mechanical design of translocating motor proteins. Cell Biochem. Biophys. 54:11–22, 2009.

    Article  Google Scholar 

  38. Huang, B., W. Q. Wang, M. Bates, and X. W. Zhuang. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813, 2008.

    Article  Google Scholar 

  39. Hudspeth, A. J., Y. Choe, A. D. Mehta, and P. Martin. Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc. Natl Acad. Sci. USA 97:11765–11772, 2000.

    Article  Google Scholar 

  40. Hwang, W., M. J. Lang, and M. Karplus. Force generation in kinesin hinges on cover-neck bundle formation. Structure 16:62–71, 2008.

    Article  Google Scholar 

  41. Hytonen, V. P., and V. Vogel. How force might activate talin’s vinculin binding sites: SMD reveals a structural mechanism. PLoS Comput. Biol. 4:e24, 2008.

    Article  Google Scholar 

  42. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20:811–827, 2006.

    Article  Google Scholar 

  43. Iozzo, R. V. (ed.). Proteoglycans: Structure, Biology, and Molecular Interactions. New York: Marcel Dekker, 2000.

  44. Jares-Erijman, E. A., and T. M. Jovin. Imaging molecular interactions in living cells by FRET microscopy. Curr. Opin. Chem. Biol. 10:409–416, 2006.

    Article  Google Scholar 

  45. Johnson, C. P., H. Y. Tang, C. Carag, D. W. Speicher, and D. E. Discher. Forced unfolding of proteins within cells. Science 317:663–666, 2007.

    Article  Google Scholar 

  46. Kamm, R. D., and M. R. Kaazempur-Mofrad. On the molecular basis for mechanotransduction. Mech. Chem. Biosyst. 1:201–209, 2004.

    Google Scholar 

  47. Khalil, A. S., D. C. Appleyard, A. K. Labno, A. Georges, M. Karplus, A. M. Belcher, W. Hwang, and M. J. Lang. Kinesin’s cover-neck bundle folds forward to generate force. Proc. Natl Acad. Sci. USA 105:9247–19252, 2008.

    Article  Google Scholar 

  48. Kolahi, K. S., and M. R. Mofrad. Molecular mechanics of filamin’s rod domain. Biophys. J. 94:1075–1083, 2008.

    Article  Google Scholar 

  49. Kong, F., A. J. García, A. P. Mould, M. J. Humphries, and C. Zhu. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185:1275–1284, 2009.

    Article  Google Scholar 

  50. Konstantopoulos, K., W. D. Hanley, and D. Wirtz. Receptor–ligand binding: ‘catch’ bonds finally caught. Curr. Biol. 13:R611–R613, 2003.

    Article  Google Scholar 

  51. Lee, S. E., S. Chunsrivirot, R. D. Kamm, and M. R. Mofrad. Molecular dynamics study of talin–vinculin binding. Biophys. J. 95:2027–2036, 2008.

    Article  Google Scholar 

  52. Lee, S. E., R. D. Kamm, and M. R. Mofrad. Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J. Biomech. 40:2096–2106, 2007.

    Article  Google Scholar 

  53. Lee, J. H., et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13:95–99, 2007.

    Article  Google Scholar 

  54. Lehoux, S., Y. Castier, and A. Tedgui. Molecular mechanisms of the vascular responses to haemodynamic forces. J. Intern. Med. 259:381–392, 2006.

    Article  Google Scholar 

  55. Lou, J. Z., and C. Zhu. Flow induces loop-to-beta-hairpin transition on the beta-switch of platelet glycoprotein Ib alpha. Proc. Natl Acad. Sci. USA 105:13847–13852, 2008.

    Article  Google Scholar 

  56. Marszalek, P. E., et al. Mechanical unfolding intermediates in titin modules. Nature 402:100–103, 1999.

    Article  Google Scholar 

  57. Martin, B., B. N. Giepmans, S. R. Adams, and R. Y. Tsien. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol. 23:1308–1314, 2005.

    Article  Google Scholar 

  58. Meng, F., T. M. Suchyna, and F. Sachs. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J. 275:3072–3087, 2008.

    Article  Google Scholar 

  59. Mertz, D., C. Vogt, J. Hemmerlé, J. Mutterer, V. Ball, J. C. Voegel, P. Schaaf, and P. Lavalle. Mechanotransductive surfaces for reversible biocatalysis activation. Nat. Mater. 8:731–735, 2009.

    Article  Google Scholar 

  60. Mofrad, M. R., J. Golji, N. A. Abdul Rahim, and R. D. Kamm. Force-induced unfolding of the focal adhesion targeting domain and the influence of paxillin binding. Mech. Chem. Biosyst. 1:253–265, 2004.

    Google Scholar 

  61. Nayak, G. D., H. S. Ratnayaka, R. J. Goodyear, and G. P. Richardson. Development of the hair bundle and mechanotransduction. Int. J. Dev. Biol. 51:597–608, 2007.

    Article  Google Scholar 

  62. Neuman, K. C. L., T. Lionnet, and J.-F. Allemand. Single-molecule micromanipulation techniques. Annu. Rev. Mater. Res. 37:33–67, 2007.

    Article  Google Scholar 

  63. Ng, L. G., A. J. Grodzinsky, J. D. Sandy, A. H. K. Plaas, and C. Ortiz. Individual aggrecan molecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J. Structural Biol. 143:242–257, 2003.

    Article  Google Scholar 

  64. Oberhauser, A. F., C. Badilla-Fernandez, M. Carrion-Vazquez, and J. M. Fernandez. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319:433–447, 2002.

    Article  Google Scholar 

  65. O’Hare, H. M., K. Johnsson, and A. Gautier. Chemical probes shed light on protein function. Curr. Opin. Struct. Biol. 17:488–494, 2007.

    Article  Google Scholar 

  66. Parekh, A., and A. M. Weaver. Regulation of cancer invasiveness by the physical extracellular matrix environment. Cell Adh. Migr. 3:288–292, 2009.

    Google Scholar 

  67. Park, T. J., et al. Protein nanopatterns and biosensors using gold binding polypeptide as a fusion partner. Anal. Chem. 78:7197–7205, 2006.

    Article  Google Scholar 

  68. Pfister, B. J., T. P. Weihs, M. Betenbaugh, and G. Bao. An in vitro uniaxial stretch model for axonal injury. Ann. Biomed. Eng. 31:589–598, 2003.

    Article  Google Scholar 

  69. Puchner, E. M., A. Alexandrovich, A. L. Kho, U. Hensen, L. V. Schäfer, B. Brandmeier, F. Gräter, H. Grubmüller, H. E. Gaub, and M. Gautel. Mechanoenzymatics of titin kinase. Proc. Natl Acad. Sci. USA 105:13385–13390, 2008.

    Article  Google Scholar 

  70. Rief, M., M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112, 1997.

    Article  Google Scholar 

  71. Santangelo, P., N. Nitin, and G. Bao. Nanostructured probes for RNA detection in living cells. Ann. Biomed. Eng. 34:39–50, 2006.

    Article  Google Scholar 

  72. Siedlecki, C. A., et al. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 88:2939–2950, 1996.

    Google Scholar 

  73. Silver, F. H., and L. M. Siperko. Mechanosensing and mechanochemical transduction: how is mechanical energy sensed and converted into chemical energy in an extracellular matrix? Crit. Rev. Biomed. Eng. 31:255–331, 2003.

    Article  Google Scholar 

  74. Sims, P. A., and X. S. Xie. Probing dynein and kinesin stepping with mechanical manipulation in a living cell. Chemphyschem 10:1511–1516, 2009.

    Article  Google Scholar 

  75. Smith, M. L., et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5:e268, 2007.

    Article  Google Scholar 

  76. Spetzler, D., et al. Recent developments of bio-molecular motors as on-chip devices using single molecule techniques. Lab Chip 7:1633–1643, 2007.

    Article  Google Scholar 

  77. Strick, T. R., J. F. Allemand, D. Bensimon, and V. Croquette. Stress-induced structural transitions in DNA and proteins. Annu. Rev. Biophys. Biomol. Struct. 29:523–543, 2000.

    Article  Google Scholar 

  78. Suchyna, T., and F. Sachs. Mechanical and electrical properties of membranes from dystrophic and normal mouse muscle. J. Physiol. 581:369–387, 2007.

    Article  Google Scholar 

  79. Sundberg, M., et al. Actin filament guidance on a chip: toward high-throughput assays and lab-on-a-chip applications. Langmuir 22:7286–7295, 2006.

    Article  Google Scholar 

  80. Suri, S. S., H. Fenniri, and B. Singh. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2:16, 2007.

    Article  Google Scholar 

  81. Thomas, W. E. Catch bonds in adhesion. Annu. Rev. Biomed. Eng. 10:39–57, 2008.

    Article  Google Scholar 

  82. Tschumperlin, D. J., et al. Mechanotransduction through growth-factor shedding into the extracellular space. Nature 429:83–86, 2004.

    Article  Google Scholar 

  83. Tzakos, A. G., C. R. Grace, P. J. Lukavsky, and R. Riek. NMR techniques for very large proteins and RNAs in solution. Annu. Rev. Biophys. Biomol. Struct. 35:319–342, 2006.

    Article  Google Scholar 

  84. Usami, S., H. H. Chen, Y. H. Zhao, S. Chien, and R. Skalak. Design and construction of a linear shear-stress flow chamber. Ann. Biomed. Eng. 21:77–83, 1993.

    Article  Google Scholar 

  85. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112:467, 2003.

    Article  Google Scholar 

  86. van den Heuvel, M. G. L., and C. Dekker. Motor proteins at work for nanotechnology. Science 317:333–336, 2007.

    Article  Google Scholar 

  87. Vogel, V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35:459–488, 2006.

    Article  Google Scholar 

  88. Vogel, V., and M. Sheetz. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:265–275, 2006.

    Article  Google Scholar 

  89. Williams, J. M., V. Rayan, D. R. Sumner, and E. J. Thonar. The use of intra-articular Na-hyaluronate as a potential chondroprotective device in experimentally induced acute articular cartilage injury and repair in rabbits. J. Orthop. Res. 21:305–311, 2003.

    Article  Google Scholar 

  90. Willig, K. I., S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939, 2006.

    Article  Google Scholar 

  91. World, C. J., G. Garin, and B. Berk. Vascular shear stress and activation of inflammatory genes. Curr. Atheroscler. Rep. 8:240–244, 2006.

    Article  Google Scholar 

  92. Yago, T., J. Lou, T. Wu, J. Yang, J. J. Miner, L. Coburn, J. A. López, M. A. Cruz, J.-F. Dong, L. V. McIntire, R. M. McEver, and C. Zhu. Platelet glycoprotein Iba forms catch bonds with human WT vWF but not with type 2B von Willebrand Disease vWF. J. Clin. Invest. 118:3195–3207, 2008.

    Google Scholar 

  93. Yefimov, S., E. van der Giessen, P. R. Onck, and S. J. Marrink. Mechanosensitive membrane channels in action. Biophys. J. 94:2994–3002, 2008.

    Article  Google Scholar 

  94. Yuan, C., A. Chen, P. Kolb, and V. T. Moy. Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. Biochemistry 39:10219–10223, 2000.

    Article  Google Scholar 

  95. Zaman, M. H., and M. R. Kaazempur-Mofrad. How flexible is alpha-actinin’s rod domain? Mech. Chem. Biosyst. 1:291–302, 2004.

    Google Scholar 

  96. Zhu, C., G. Bao, and N. Wang. Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2:189–226, 2000.

    Article  Google Scholar 

  97. Zhu, C., and R. P. McEver. Catch bonds: physical models and biological functions. Mol. Cell. Biomech. 2:91–104, 2005.

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH as a Program of Excellence in Nanotechnology (UO1HL80711-05 to GB), by NIH Grants R01GM076689-01 (RDK), R01AR033236-26 (AJG), R01GM087677-01A1 (WH), R01AI44902 (CZ) and R01AI38282 (CZ), and by NSF Grant CMMI-0645054 (WT), CBET-0829205 (MRKM) and CAREER-0955291 (MRKM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, G., Kamm, R.D., Thomas, W. et al. Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function. Cel. Mol. Bioeng. 3, 91–105 (2010). https://doi.org/10.1007/s12195-010-0109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0109-z

Keywords

Navigation