Skip to main content
Log in

Mechanical Properties and Gene Expression of Chondrocytes on Micropatterned Substrates Following Dedifferentiation in Monolayer

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Chondrocytes in articular cartilage normally exhibit high expression of collagen II and aggrecan but rapidly dedifferentiate to a fibroblastic phenotype if passaged in culture. Previous studies have suggested that the loss of chondrocyte phenotype is associated with changes in the structure of the F-actin cytoskeleton, which also controls cell mechanical properties. In this study, we examined how dedifferentiation in monolayer influences the mechanical properties of chondrocytes isolated from different zones of articular cartilage. Atomic force microscopy was used to measure the mechanical properties of superficial and middle/deep zone chondrocytes as they underwent serial passaging and subsequent growth on fibronectin-coated, micropatterned self-assembled monolayers that restored a rounded cell shape in 2D culture. Chondrocytes exhibited significant increases in elastic and viscoelastic moduli with dedifferentiation in culture. These changes were only partially ameliorated by the restoration of a rounded shape on micropatterned surfaces. Furthermore, intrinsic zonal differences in cell mechanical properties were rapidly lost with passage. These findings indicate that cell mechanical properties may provide additional measures of phenotypic expression of chondrocytes as they undergo dedifferentiation and possibly redifferentiation in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Archer, C. W., J. McDowell, M. T. Bayliss, M. D. Stephens, and G. Bentley. Phenotypic modulation in sub-populations of human articular chondrocytes in vitro. J. Cell Sci. 97:361–371, 1990.

    Google Scholar 

  2. Aydelotte, M. B., R. R. Greenhill, and K. E. Kuettner. Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect. Tissue Res. 18:223–234, 1988.

    Article  Google Scholar 

  3. Aydelotte, M. B., and K. E. Kuettner. Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect. Tissue Res. 18:205–222, 1988.

    Article  Google Scholar 

  4. Bausch, A. R., F. Ziemann, A. A. Boulbitch, K. Jacobson, and E. Sackmann. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75:2038–2049, 1998.

    Article  Google Scholar 

  5. Benninghoff, A. Form und Bau der Gelenkknorpel in ihren beziechungen zur funktion. I. Die modellierenden und formerhalterden Faktoren des Knorpelreliefs. Z. ges. Anat. 76:43–63, 1925.

    Article  Google Scholar 

  6. Benya, P. D., and J. D. Shaffer. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224, 1982.

    Article  Google Scholar 

  7. Cournil-Henrionnet, C., C. Huselstein, Y. Wang, L. Galois, D. Mainard, V. Decot, P. Netter, J. F. Stoltz, S. Muller, P. Gillet, and A. Watrin-Pinzano. Phenotypic analysis of cell surface markers and gene expression of human mesenchymal stem cells and chondrocytes during monolayer expansion. Biorheology 45:513–526, 2008.

    Google Scholar 

  8. Darling, E. M., and K. A. Athanasiou. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23:425–432, 2005.

    Article  Google Scholar 

  9. Darling, E. M., and K. A. Athanasiou. Retaining zonal chondrocyte phenotype by means of novel growth environments. Tissue Eng. 11:395–403, 2005.

    Article  Google Scholar 

  10. Darling, E. M., J. C. Y. Hu, and K. A. Athanasiou. Zonal and topographical differences in articular chondrocyte gene expression. J. Orthop. Res. 22:1182–1187, 2004.

    Article  Google Scholar 

  11. Darling, E. M., M. Topel, S. Zauscher, T. P. Vail, and F. Guilak. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 41:454–464, 2008.

    Article  Google Scholar 

  12. Darling, E. M., S. Zauscher, J. A. Block, and F. Guilak. A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys. J. 92:1784–1791, 2007.

    Article  Google Scholar 

  13. Darling, E. M., S. Zauscher, and F. Guilak. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthritis Cartilage 14:571–579, 2006.

    Article  Google Scholar 

  14. Evans, E. A., and R. M. Hochmuth. Membrane viscoelasticity. Biophys. J. 16:1–11, 1976.

    Article  Google Scholar 

  15. Gallant, N. D., K. E. Michael, and A. J. Garcia. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 16:4329–4340, 2005.

    Article  Google Scholar 

  16. Grundmann, K., B. Zimmermann, H. J. Barrach, and H. J. Merker. Behaviour of epiphyseal mouse chondrocyte populations in monolayer culture. Morphological and immunohistochemical studies. Virchows Arch. A Pathol. Anat. Histol. 389:167–187, 1980.

    Article  Google Scholar 

  17. Guck, J., S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88:3689–3698, 2005.

    Article  Google Scholar 

  18. Guo, S., and B. B. Akhremitchev. Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation. Biomacromolecules 7:1630–1636, 2006.

    Article  Google Scholar 

  19. Hauselmann, H. J., M. B. Aydelotte, B. L. Schumacher, K. E. Kuettner, S. H. Gitelis, and E. J. Thonar. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix 12:116–129, 1992.

    Google Scholar 

  20. Ikai, A. A review on: Atomic force microscopy applied to nano-mechanics of the cell. Adv. Biochem. Eng. Biotechnol., 2009.

  21. Jones, W. R., H. P. Ting-Beall, G. M. Lee, S. S. Kelley, R. M. Hochmuth, and F. Guilak. Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32:119–127, 1999.

    Article  Google Scholar 

  22. Kemp, M. W., and K. E. Davies. The role of intermediate filament proteins in the development of neurological disease. Crit. Rev. Neurobiol. 19:1–27, 2007.

    Google Scholar 

  23. Lee, D. A., T. Noguchi, M. M. Knight, L. O’Donnell, G. Bentley, and D. L. Bader. Response of chondrocyte subpopulations cultured within unloaded and loaded agarose. J. Orthop. Res. 16:726–733, 1998.

    Article  Google Scholar 

  24. Leipzig, N. D., S. V. Eleswarapu, and K. A. Athanasiou. The effects of TGF-beta1 and IGF-I on the biomechanics and cytoskeleton of single chondrocytes. Osteoarthritis Cartilage 14:1227–1236, 2006.

    Article  Google Scholar 

  25. Lin, Z., J. B. Fitzgerald, J. Xu, C. Willers, D. Wood, A. J. Grodzinsky, and M. H. Zheng. Gene expression profiles of human chondrocytes during passaged monolayer cultivation. J. Orthop. Res. 26:1230–1237, 2008.

    Article  Google Scholar 

  26. Makale, M. Cellular mechanobiology and cancer metastasis. Birth Defects Res. C Embryo Today 81:329–343, 2007.

    Article  Google Scholar 

  27. Mallein-Gerin, F., R. Garrone, and M. van der Rest. Proteoglycan and collagen synthesis are correlated with actin organization in dedifferentiating chondrocytes. Eur. J. Cell Biol. 56:364–373, 1991.

    Google Scholar 

  28. McConnaughey, W. B., and N. O. Petersen. Cell poker: an apparatus for stress-strain measurements on living cells. Rev. Sci. Instrum. 51:575–580, 1980.

    Article  Google Scholar 

  29. Mehlhorn, A. T., P. Niemeyer, S. Kaiser, G. Finkenzeller, G. B. Stark, N. P. Sudkamp, and H. Schmal. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng. 12:2853–2862, 2006.

    Article  Google Scholar 

  30. Murphy, C. L., and A. Sambanis. Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng. 7:791–803, 2001.

    Article  Google Scholar 

  31. Pritchard, S., and F. Guilak. The role of F-actin in hypo-osmotically induced cell volume change and calcium signaling in anulus fibrosus cells. Ann. Biomed. Eng. 32:103–111, 2004.

    Article  Google Scholar 

  32. Shin, D., and K. Athanasiou. Cytoindentation for obtaining cell biomechanical properties. J. Orthop. Res. 17:880–890, 1999.

    Article  Google Scholar 

  33. Siczkowski, M., and F. M. Watt. Subpopulations of chondrocytes from different zones of pig articular cartilage. Isolation, growth and proteoglycan synthesis in culture. J. Cell Sci. 97:349–360, 1990.

    Google Scholar 

  34. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3:413–438, 2007.

    Article  MathSciNet  Google Scholar 

  35. Tim O’Brien, E., J. Cribb, D. Marshburn, R. M. Taylor, 2nd, and R. Superfine. Chapter 16: Magnetic manipulation for force measurements in cell biology. Methods Cell Biol. 89:433–450, 2008.

    Article  Google Scholar 

  36. Trickey, W. R., F. P. Baaijens, T. A. Laursen, L. G. Alexopoulos, and F. Guilak. Determination of the Poisson’s ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration. J. Biomech. 39:78–87, 2006.

    Article  Google Scholar 

  37. Trickey, W. R., G. M. Lee, and F. Guilak. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 18:891–898, 2000.

    Article  Google Scholar 

  38. Trickey, W. R., T. P. Vail, and F. Guilak. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J. Orthop. Res. 22:131–139, 2004.

    Article  Google Scholar 

  39. van Susante, J. L., P. Buma, G. J. van Osch, D. Versleyen, P. M. van der Kraan, W. B. van der Berg, and G. N. Homminga. Culture of chondrocytes in alginate and collagen carrier gels. Acta Orthop. Scand. 66:549–556, 1995.

    Article  Google Scholar 

  40. Weiss, L., and K. Clement. Studies on cell deformability. Some rheological considerations. Exp. Cell Res. 58:379–387, 1969.

    Article  Google Scholar 

  41. Zanetti, M., A. Ratcliffe, and F. M. Watt. Two subpopulations of differentiated chondrocytes identified with a monoclonal antibody to keratan sulfate. J. Cell Biol. 101:53–59, 1985.

    Article  Google Scholar 

  42. Zanetti, N. C., and M. Solursh. Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton. J. Cell Biol. 99:115–123, 1984.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants AR53448 (EMD), EB01630, AG15768, AR48182, AR50245, and EB002025 (RS) and NSF grant CMS-0507151 (RS). The authors would like to thank Drs. Ashutosh Chilkoti, Dominic Chow, David Dumbauld, and Andrés Garcia for discussions and advice on the development of micropatterned substrates. The authors would also like to acknowledge the Shared Materials Instrumentation Facility at Duke University for providing resources for SEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Guilak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darling, E.M., Pritchett, P.E., Evans, B.A. et al. Mechanical Properties and Gene Expression of Chondrocytes on Micropatterned Substrates Following Dedifferentiation in Monolayer. Cel. Mol. Bioeng. 2, 395–404 (2009). https://doi.org/10.1007/s12195-009-0077-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0077-3

Keywords

Navigation