Skip to main content
Log in

Stretch and Shear Interactions Affect Intercellular Junction Protein Expression and Turnover in Endothelial Cells

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Complex hemodynamics plays a role in the localization and development of atherosclerosis. Endothelial cells (ECs) lining blood vessel walls are directly influenced by various hemodynamic forces: simultaneous wall shear stress (WSS), normal stress, and circumferential stress/strain (CS) due to pulsatile flow, pressure, and diameter changes. ECs sense and transduce these forces into biomolecular responses that may affect intercellular junctions. In this study, a hemodynamic simulator was used to investigate the combined effects of WSS and CS on EC junctions with emphasis on the stress phase angle (SPA), the temporal phase difference between WSS and CS. Regions of the circulation with highly negative SPA, such as the coronary arteries and carotid bifurcation, are more susceptible to the development of atherosclerosis. At 5 h, expression of the tight junction (TJ) protein zonula occludens-1 was significantly higher for the atheroprotective SPA = 0° compared to the atherogenic SPA = −180° while the apoptosis rate was significantly higher for SPA = −180° than SPA = 0°. This decrease in TJ protein and increase in apoptosis and associated leaky junctions suggest a decreased junctional stability and a higher paracellular permeability for atherogenic macromolecules for the atherogenic SPA = −180° compared to SPA = 0°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Antonetti, D. A., E. B. Wolpert, L. DeMaio, N. S. Harhaj, and R. C. Scaduto, Jr. Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J. Neurochem. 80(4):667–677, 2002.

    Article  Google Scholar 

  2. Berardi, D. E. Effects of simultaneous wall shear stress and circumferential strain on endothelial cell junctions. Pennsylvania State University, Department of Bioengineering, University Park, Doctor of Philosophy, 2009, 125 pp.

  3. Burns, A. R., D. C. Walker, E. S. Brown, L. T. Thurmon, R. A. Bowden, C. R. Keese, S. I. Simon, M. L. Entman, and C. W. Smith. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J. Immunol. 159(6):2893–2903, 1997.

    Google Scholar 

  4. Cancel, L. M., A. Fitting, and J. M. Tarbell. In vitro study of LDL transport under pressurized (convective) conditions. Am. J. Physiol. Heart Circ. Physiol. 293(1):H126–H132, 2007.

    Article  Google Scholar 

  5. Cancel, L., and J. Tarbell. The role of apoptosis and mitosis in LDL transport through endothelial cell monolayers. In: BMES Annual Fall Meeting, St. Louis, MO, 2008

  6. Chang, Y. S., J. A. Yaccino, S. Lakshminarayanan, J. A. Frangos, and J. M. Tarbell. Shear-induced increase in hydraulic conductivity in endothelial cells is mediated by a nitric oxide-dependent mechanism. Arterioscler. Thromb. Vasc. Biol. 20(1):35–42, 2000.

    Google Scholar 

  7. Chien, S., S. J. Lin, S. Weinbaum, M. M. Lee, and K. M. Jan. The role of arterial endothelial cell mitosis in macromolecular permeability. Adv. Exp. Med. Biol. 242:59–73, 1988.

    Google Scholar 

  8. Colgan, O. C., G. Ferguson, N. T. Collins, R. P. Murphy, G. Meade, P. A. Cahill, and P. M. Cummins. Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. Am. J. Physiol. Heart Circ. Physiol. 292(6):H3190–H3197, 2007.

    Article  Google Scholar 

  9. Collins, N. T., P. M. Cummins, O. C. Colgan, G. Ferguson, Y. A. Birney, R. P. Murphy, G. Meade, and P. A. Cahill. Cyclic strain-mediated regulation of vascular endothelial occludin and ZO-1: influence on intercellular tight junction assembly and function. Arterioscler. Thromb. Vasc. Biol. 26(1):62–68, 2006.

    Article  Google Scholar 

  10. Conklin, B. S., R. P. Vito, and C. Chen. Effect of low shear stress on permeability and occludin expression in porcine artery endothelial cells. World J. Surg. 31(4):733–743, 2007.

    Article  Google Scholar 

  11. Conklin, B. S., D. S. Zhong, W. Zhao, P. H. Lin, and C. Chen. Shear stress regulates occludin and VEGF expression in porcine arterial endothelial cells. J. Surg. Res. 102(1):13–21, 2002.

    Article  Google Scholar 

  12. Dancu, M. B., D. E. Berardi, J. P. Vanden Heuvel, and J. M. Tarbell. Asynchronous shear stress and circumferential strain reduces endothelial NO synthase and cyclooxygenase-2 but induces endothelin-1 gene expression in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24(11):2088–2094, 2004.

    Article  Google Scholar 

  13. Dancu, M. B., D. E. Berardi, J. P. Vanden Heuvel, and J. M. Tarbell. Atherogenic endothelial cell eNOS and ET-1 responses to asynchronous hemodynamics are mitigated by conjugated linoleic acid. Ann. Biomed. Eng. 35(7):1111–1119, 2007.

    Article  Google Scholar 

  14. Dancu, M. B., and J. M. Tarbell. Large negative stress phase angle (SPA) attenuates nitric oxide production in bovine aortic endothelial cells. J. Biomech. Eng. 128(3):329–334, 2006.

    Article  Google Scholar 

  15. Dancu, M. B., and J. M. Tarbell. Coronary endothelium expresses a pathologic gene pattern compared to aortic endothelium: correlation of asynchronous hemodynamics and pathology in vivo. Atherosclerosis 192(1):9–14, 2007.

    Article  Google Scholar 

  16. Dartsch, P. C., and E. Betz. Response of cultured endothelial cells to mechanical stimulation. Basic Res. Cardiol. 84(3):268–281, 1989.

    Article  Google Scholar 

  17. Dejana, E., G. Bazzoni, and M. G. Lampugnani. Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp. Cell Res. 252(1):13–19, 1999.

    Article  Google Scholar 

  18. DeMaio, L., Y. S. Chang, T. W. Gardner, J. M. Tarbell, and D. A. Antonetti. Shear stress regulates occludin content and phosphorylation. Am. J. Physiol. Heart Circ. Physiol. 281(1):H105–H113, 2001.

    Google Scholar 

  19. Dobrin, P. B. Mechanical properties of arteries. Physiol. Rev. 58(2):397–460, 1978.

    Google Scholar 

  20. Frangos, S. G., V. Gahtan, and B. Sumpio. Localization of atherosclerosis: role of hemodynamics. Arch. Surg. 134(10):1142–1149, 1999.

    Article  Google Scholar 

  21. Furuse, M., T. Hirase, M. Itoh, A. Nagafuchi, S. Yonemura, and S. Tsukita. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell. Biol. 123(6 Pt 2):1777–1788, 1993.

    Article  Google Scholar 

  22. Haga, M., A. Chen, D. Gortler, A. Dardik, and B. E. Sumpio. Shear stress and cyclic strain may suppress apoptosis in endothelial cells by different pathways. Endothelium 10(3):149–157, 2003.

    Article  Google Scholar 

  23. Herren, B., B. Levkau, E. W. Raines, and R. Ross. Cleavage of beta-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol. Biol. Cell. 9(6):1589–1601, 1998.

    Google Scholar 

  24. Ikenouchi, J., M. Furuse, K. Furuse, H. Sasaki, S. Tsukita, and S. Tsukita. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J. Cell. Biol. 171(6):939–945, 2005.

    Article  Google Scholar 

  25. Jo, H., R. O. Dull, T. M. Hollis, and J. M. Tarbell. Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am. J. Physiol. 260(6 Pt 2):H1992–H1996, 1991.

    Google Scholar 

  26. Kadohama, T., K. Nishimura, Y. Hoshino, T. Sasajima, and B. E. Sumpio. Effects of different types of fluid shear stress on endothelial cell proliferation and survival. J. Cell. Physiol. 212(1):244–251, 2007.

    Article  Google Scholar 

  27. Kevil, C. G., N. Okayama, S. D. Trocha, T. J. Kalogeris, L. L. Coe, R. D. Specian, C. P. Davis, and J. S. Alexander. Expression of zonula occludens and adherens junctional proteins in human venous and arterial endothelial cells: role of occludin in endothelial solute barriers. Microcirculation 5(2–3):197–210, 1998.

    Article  Google Scholar 

  28. Lee, C. S., and J. M. Tarbell. Wall shear rate distribution in an abdominal aortic bifurcation model: effects of vessel compliance and phase angle between pressure and flow waveforms. J. Biomech. Eng. 119(3):333–342, 1997.

    Article  Google Scholar 

  29. Lee, C. S., and J. M. Tarbell. Influence of vasoactive drugs on wall shear stress distribution in the abdominal aortic bifurcation: an in vitro study. Ann. Biomed. Eng. 26(2):200–212, 1998.

    Article  Google Scholar 

  30. Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107(4):341–347, 1985.

    Article  Google Scholar 

  31. Levesque, M. J., R. M. Nerem, and E. A. Sprague. Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11(9):702–707, 1990.

    Article  Google Scholar 

  32. Lin, S. J., K. M. Jan, and S. Chien. Role of dying endothelial cells in transendothelial macromolecular transport. Arteriosclerosis 10(5):703–709, 1990.

    Google Scholar 

  33. Lin, S. J., K. M. Jan, S. Weinbaum, and S. Chien. Transendothelial transport of low density lipoprotein in association with cell mitosis in rat aorta. Arteriosclerosis 9(2):230–236, 1989.

    Google Scholar 

  34. Lipowsky, H. H. Shear stress in the circulation. In: Flow-Dependent Regulation of Vascular Function, edited by J. A. Bevan, G. Kaley, and G. M. Rubanyi. New York/Oxford: Oxford University Press, 1995.

  35. Liu, X. M., D. Ensenat, H. Wang, A. I. Schafer, and W. Durante. Physiologic cyclic stretch inhibits apoptosis in vascular endothelium. FEBS Lett. 541(1–3):52–56, 2003.

    Article  Google Scholar 

  36. McKenzie, J. A., and A. J. Ridley. Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J. Cell. Physiol. 213(1):221–228, 2007.

    Article  Google Scholar 

  37. Miao, H., Y. L. Hu, Y. T. Shiu, S. Yuan, Y. Zhao, R. Kaunas, Y. Wang, G. Jin, S. Usami, and S. Chien. Effects of flow patterns on the localization and expression of VE-cadherin at vascular endothelial cell junctions: in vivo and in vitro investigations. J. Vasc. Res. 42(1):77–89, 2005.

    Article  Google Scholar 

  38. Moore, Jr., J. E., E. Burki, A. Suciu, S. Zhao, M. Burnier, H. R. Brunner, and J. J. Meister. A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch. Ann. Biomed. Eng. 22(4):416–422, 1994.

    Article  Google Scholar 

  39. Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries: Theoretical, Experimental, and Clinical Principles. New York: Hodder Arnold Publication (Oxford University Press), 2005.

    Google Scholar 

  40. Noria, S., D. B. Cowan, A. I. Gotlieb, and B. L. Langille. Transient and steady-state effects of shear stress on endothelial cell adherens junctions. Circ. Res. 85(6):504–514, 1999.

    Google Scholar 

  41. Pang, Z., D. A. Antonetti, and J. M. Tarbell. Shear stress regulates HUVEC hydraulic conductivity by occludin phosphorylation. Ann. Biomed. Eng. 33(11):1536–1545, 2005.

    Article  Google Scholar 

  42. Phelps, J. E., and N. DePaola. Spatial variations in endothelial barrier function in disturbed flows in vitro. Am. J. Physiol. Heart Circ. Physiol. 278(2):H469–H476, 2000.

    Google Scholar 

  43. Qiu, Y., and J. M. Tarbell. Interaction between wall shear stress and circumferential strain affects endothelial cell biochemical production. J. Vasc. Res. 37(3):147–157, 2000.

    Article  Google Scholar 

  44. Qiu, Y., and J. M. Tarbell. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J. Biomech. Eng. 122(1):77–85, 2000.

    Article  Google Scholar 

  45. Rosamond, W., K. Flegal, G. Friday, K. Furie, A. Go, K. Greenlund, N. Haase, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lloyd-Jones, M. McDermott, J. Meigs, C. Moy, G. Nichol, C. J. O'Donnell, V. Roger, J. Rumsfeld, P. Sorlie, J. Steinberger, T. Thom, S. Wasserthiel-Smoller, and Y. Hong. Heart disease and stroke statistics-2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115(5):e69–e171, 2007.

    Article  Google Scholar 

  46. Sill, H., C. Butler, T. Hollis, and J. Tarbell. Albumin permeability and electrical conductivity as means of assessing endothelial cell monolayer integrity. J. Tissue Cult. Method. 14:253–258, 1992.

    Article  Google Scholar 

  47. Sill, H. W., Y. S. Chang, J. R. Artman, J. A. Frangos, T. M. Hollis, and J. M. Tarbell. Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am. J. Physiol. 268(2 Pt 2):H535–H543, 1995.

    Google Scholar 

  48. Stevenson, B. R., J. D. Siliciano, M. S. Mooseker, and D. A. Goodenough. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 103(3):755–766, 1986.

    Article  Google Scholar 

  49. Sumpio, B. E., A. J. Banes, L. G. Levin, and G. Johnson, Jr. Mechanical stress stimulates aortic endothelial cells to proliferate. J. Vasc. Surg. 6(3):252–256, 1987.

    Article  Google Scholar 

  50. Tada, S., and J. M. Tarbell. A computational study of flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress. Ann. Biomed. Eng. 33(9):1202–1212, 2005.

    Article  Google Scholar 

  51. Taddei, A., C. Giampietro, A. Conti, F. Orsenigo, F. Breviario, V. Pirazzoli, M. Potente, C. Daly, S. Dimmeler, and E. Dejana. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat. Cell Biol. 10(8):923–934, 2008.

    Article  Google Scholar 

  52. Truskey, G. A., W. L. Roberts, R. A. Herrmann, and R. A. Malinauskas. Measurement of endothelial permeability to 125I-low density lipoproteins in rabbit arteries by use of en face preparations. Circ. Res. 71(4):883–897, 1992.

    Google Scholar 

  53. Ukropec, J. A., M. K. Hollinger, and M. J. Woolkalis. Regulation of VE-cadherin linkage to the cytoskeleton in endothelial cells exposed to fluid shear stress. Exp. Cell Res. 273(2):240–247, 2002.

    Article  Google Scholar 

  54. Walker, D. C., A. MacKenzie, and S. Hosford. The structure of the tricellular region of endothelial tight junctions of pulmonary capillaries analyzed by freeze-fracture. Microvasc. Res. 48(3):259–281, 1994.

    Article  Google Scholar 

  55. Weinbaum, S., G. Tzeghai, P. Ganatos, R. Pfeffer, and S. Chien. Effect of cell turnover and leaky junctions on arterial macromolecular transport. Am. J. Physiol. 248(6 Pt 2):H945–H960, 1985.

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health National Heart, Lung, and Blood Institute Grants RO1-HL35549 and RO1-HL086543. Thanks to Michael Dancu for help with the dynamic simulator and the supply of tubes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Tarbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berardi, D.E., Tarbell, J.M. Stretch and Shear Interactions Affect Intercellular Junction Protein Expression and Turnover in Endothelial Cells. Cel. Mol. Bioeng. 2, 320–331 (2009). https://doi.org/10.1007/s12195-009-0073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0073-7

Keywords

Navigation