Skip to main content
Log in

Insights into the Mechanical Properties of the Kinesin Neck Linker Domain from Sequence Analysis and Molecular Dynamics Simulations

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The 14- to 18-amino acid kinesin neck linker domain links the core motor to the coiled-coil dimerization domain. One puzzle is that the neck linker appears too short for the 4-nm distance each linker must stretch to enable an 8-nm step—when modeled as an entropic spring, high inter-head forces are predicted when both heads are bound to the microtubule. We addressed this by analyzing the length of the neck linker across different kinesin families and using molecular dynamics simulations to model the extensibility of Kinesin-1 and Kinesin-2 neck linkers. The force–extension profile from molecular dynamics agrees with the worm-like chain (WLC) model for Kinesin-1 and supports the puzzling prediction that extending the neck linker 4 nm requires forces multiple times the motor stall force. Despite being three amino acids longer, simulations suggest that extending the Kinesin-2 neck linker by 4 nm requires similarly high forces. A possible resolution to this dilemma is that helix α-6 may unwind to enable the two-head bound state. Finally, simulations suggest that cis/trans isomerization of a conserved proline residue in Kinesin-2 accounts for the differing predictions of molecular dynamics and the WLC model, and may contribute to motor regulation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Block, S. M., Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys J 92:2986-2995, 2007.

    Article  Google Scholar 

  2. Block, S. M., L. S. Goldstein, and B. J. Schnapp, Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348-352, 1990.

    Article  Google Scholar 

  3. Bryson, K., L. J. McGuffin, R. L. Marsden, J. J. Ward, J. S. Sodhi, and D. T. Jones, Protein structure prediction servers at University College London. Nucleic Acids Res 33:W36-W38, 2005.

    Article  Google Scholar 

  4. Case, R. B., S. Rice, C. L. Hart, B. Ly, and R. D. Vale, Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr Biol 10:157-160, 2000.

    Article  Google Scholar 

  5. Cole, D. G., Kinesin-II, coming and going. J Cell Biol 147:463-466, 1999.

    Article  Google Scholar 

  6. Delorenzi, M. and T. Speed, An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18:617-625, 2002.

    Article  Google Scholar 

  7. Endow, S. A., Determinants of molecular motor directionality. Nat Cell Biol 1:E163-E167, 1999.

    Article  Google Scholar 

  8. Fersht, A., Structure and Mechanism in Protein Science. 1998, New York: W.H. Freeman 631.

    Google Scholar 

  9. Gruber, M., J. Soding, and A. N. Lupas, Comparative analysis of coiled-coil prediction methods. J Struct Biol 155:140-145, 2006.

    Article  Google Scholar 

  10. Guydosh, N. R. and S. M. Block, Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc Natl Acad Sci USA 103:8054-8059, 2006.

    Article  Google Scholar 

  11. Hackney, D. D., M. F. Stock, J. Moore, and R. A. Patterson, Modulation of kinesin half-site ADP release and kinetic processivity by a spacer between the head groups. Biochemistry 42:12011-12018, 2003.

    Article  Google Scholar 

  12. Hancock, W. O. and J. Howard, Processivity of the motor protein kinesin requires two heads. J Cell Biol 140:1395-1405, 1998.

    Article  Google Scholar 

  13. Hancock, W. O. and J. Howard, Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc Natl Acad Sci USA 96:13147-13152, 1999.

    Article  Google Scholar 

  14. Hancock, W. O. and J. Howard, Kinesin: Processivity and chemomechanical coupling, in Molecular Motors, M. Schliwa, Editor. 2003, Wiley-VCH: Weinheim, Germany. p. 243-269.

    Google Scholar 

  15. Hirose, K., A. Lockhart, R. A. Cross, and L. A. Amos, Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc Natl Acad Sci U S A 93:9539-9544, 1996.

    Article  Google Scholar 

  16. Hoeng, J. C., S. C. Dawson, S. A. House, M. S. Sagolla, J. K. Pham, J. J. Mancuso, J. Lowe, and W. Z. Cande. High resolution crystal structure and in vivo function of a Kinesin-2 homolog in Giardia intestinalis. Mol. Biol. Cell, 19:3124–3137, 2008.

    Article  Google Scholar 

  17. Howard, J., Mechanics of Motor Proteins and the Cytoskeleton. 1st. ed. 2001, Sunderland, MA: Sinauer, 367.

    Google Scholar 

  18. Howard, J., A. J. Hudspeth, and R. D. Vale, Movement of microtubules by single kinesin molecules. Nature 342:154-158, 1989.

    Article  Google Scholar 

  19. Hyeon, C. and J. N. Onuchic, Internal strain regulates the nucleotide binding site of the kinesin leading head. Proc Natl Acad Sci U S A 104:2175-2180, 2007.

    Article  Google Scholar 

  20. Jones, D. T., GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 287:797-815, 1999.

    Article  Google Scholar 

  21. Jones, D. T., Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23:538-544, 2007.

    Article  Google Scholar 

  22. Jones, D. T., W. R. Taylor, and J. M. Thornton, A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038-3049, 1994.

    Article  Google Scholar 

  23. Kashina, A. S., R. J. Baskin, D. G. Cole, K. P. Wedaman, W. M. Saxton, and J. M. Scholey, A bipolar kinesin. Nature 379:270-272, 1996.

    Article  Google Scholar 

  24. Kellermayer, M. S., S. B. Smith, H. L. Granzier, and C. Bustamante, Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276:1112-1116, 1997.

    Article  Google Scholar 

  25. Khalil, A. S., D. C. Appleyard, A. K. Labno, A. Georges, M. Karplus, A. M. Belcher, W. Hwang, and M. J. Lang, Kinesin’s cover-neck bundle folds forward to generate force. Proc Natl Acad Sci USA 105:19247-19252, 2008.

    Article  Google Scholar 

  26. Kikkawa, M., E. P. Sablin, Y. Okada, H. Yajima, R. J. Fletterick, and N. Hirokawa, Switch-based mechanism of kinesin motors. Nature 411:439-445, 2001.

    Article  Google Scholar 

  27. Kim, Y., J. E. Heuser, C. M. Waterman, and D. W. Cleveland, CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether. J Cell Biol 181:411-419, 2008.

    Article  Google Scholar 

  28. Kozielski, F., S. Sack, A. Marx, M. Thormahlen, E. Schonbrunn, V. Biou, A. Thompson, E. M. Mandelkow, and E. Mandelkow, The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91:985-994, 1997.

    Article  Google Scholar 

  29. Kull, F. J., E. P. Sablin, R. Lau, R. J. Fletterick, and R. D. Vale, Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380:550-555, 1996.

    Article  Google Scholar 

  30. Kwok, B. H., L. C. Kapitein, J. H. Kim, E. J. Peterman, C. F. Schmidt, and T. M. Kapoor, Allosteric inhibition of kinesin-5 modulates its processive directional motility. Nat Chem Biol 2:480-485, 2006.

    Article  Google Scholar 

  31. Lawrence, C. J., R. K. Dawe, K. R. Christie, D. W. Cleveland, S. C. Dawson, S. A. Endow, L. S. Goldstein, H. V. Goodson, N. Hirokawa, J. Howard, R. L. Malmberg, J. R. McIntosh, H. Miki, T. J. Mitchison, Y. Okada, A. S. Reddy, W. M. Saxton, M. Schliwa, J. M. Scholey, R. D. Vale, C. E. Walczak, and L. Wordeman, A standardized kinesin nomenclature. J Cell Biol 167:19-22, 2004.

    Article  Google Scholar 

  32. Lu, K. P., G. Finn, T. H. Lee, and L. K. Nicholson, Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 3:619-629, 2007.

    Article  Google Scholar 

  33. Lupas, A., Prediction and analysis of coiled-coil structures. Methods Enzymol 266:513-525, 1996.

    Article  Google Scholar 

  34. Lupas, A., M. Van Dyke, and J. Stock, Predicting coiled coils from protein sequences. Science 252:1162-1164, 1991.

    Article  Google Scholar 

  35. McDonnell, A. V., T. Jiang, A. E. Keating, and B. Berger, Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22:356-358, 2006.

    Article  Google Scholar 

  36. McGuffin, L. J. and D. T. Jones, Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 19:874-881, 2003.

    Article  Google Scholar 

  37. Miki, H., M. Setou, K. Kaneshiro, and N. Hirokawa, All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 98:7004-7011, 2001.

    Article  Google Scholar 

  38. Muthukrishnan, G., Y. Zhang, S. Shastry, and W. O. Hancock, The processivity of kinesin-2 motors suggests diminished front-head gating. Curr Biol 19:442-447, 2009.

    Article  Google Scholar 

  39. Nagy, A., L. Grama, T. Huber, P. Bianco, K. Trombitas, H. L. Granzier, and M. S. Kellermayer, Hierarchical extensibility in the PEVK domain of skeletal-muscle titin. Biophys J 89:329-336, 2005.

    Article  Google Scholar 

  40. Nogales, E., M. Whittaker, R. A. Milligan, and K. H. Downing, High-resolution model of the microtubule. Cell 96:79-88, 1999.

    Article  Google Scholar 

  41. Oberhauser, A. F., P. K. Hansma, M. Carrion-Vazquez, and J. M. Fernandez, Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci U S A 98:468-472, 2001.

    Article  Google Scholar 

  42. Okada, Y. and N. Hirokawa, A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283:1152-1157, 1999.

    Article  Google Scholar 

  43. Parry, D. A., Coiled-coils in alpha-helix-containing proteins: analysis of the residue types within the heptad repeat and the use of these data in the prediction of coiled-coils in other proteins. Biosci Rep 2:1017-1024, 1982.

    Article  Google Scholar 

  44. Pauling, L., R. B. Corey, and H. R. Branson, The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37:205-211, 1951.

    Article  Google Scholar 

  45. Rice, S., A. W. Lin, D. Safer, C. L. Hart, N. Naber, B. O. Carragher, S. M. Cain, E. Pechatnikova, E. M. Wilson-Kubalek, M. Whittaker, E. Pate, R. Cooke, E. W. Taylor, R. A. Milligan, and R. D. Vale, A structural change in the kinesin motor protein that drives motility. Nature 402:778-784, 1999.

    Article  Google Scholar 

  46. Richardson, J. S. and D. C. Richardson, Amino acid preferences for specific locations at the ends of alpha helices. Science 240:1648-1652, 1988.

    Article  Google Scholar 

  47. Rief, M., M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109-1112, 1997.

    Article  Google Scholar 

  48. Romberg, L., D. W. Pierce, and R. D. Vale, Role of the kinesin neck region in processive microtubule-based motility. J Cell Biol 140:1407-1416, 1998.

    Article  Google Scholar 

  49. Rosenfeld, S. S., P. M. Fordyce, G. M. Jefferson, P. H. King, and S. M. Block, Stepping and stretching. How kinesin uses internal strain to walk processively. J Biol Chem 278:18550-18556, 2003.

    Article  Google Scholar 

  50. Rosenfeld, S. S., G. M. Jefferson, and P. H. King, ATP reorients the neck linker of kinesin in two sequential steps. J Biol Chem 276:40167-40174, 2001.

    Article  Google Scholar 

  51. Sack, S., J. Muller, A. Marx, M. Thormahlen, E. M. Mandelkow, S. T. Brady, and E. Mandelkow, X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry 36:16155-16165, 1997.

    Article  Google Scholar 

  52. Sindelar, C. V. and K. H. Downing, The beginning of kinesin’s force-generating cycle visualized at 9-A resolution. J Cell Biol 177:377-385, 2007.

    Article  Google Scholar 

  53. Song, Y. H., A. Marx, J. Muller, G. Woehlke, M. Schliwa, A. Krebs, A. Hoenger, and E. Mandelkow, Structure of a fast kinesin: implications for ATPase mechanism and interactions with microtubules. EMBO J 20:6213-6225, 2001.

    Article  Google Scholar 

  54. Thorn, K. S., J. A. Ubersax, and R. D. Vale, Engineering the processive run length of the kinesin motor. J Cell Biol 151:1093-1100, 2000.

    Article  Google Scholar 

  55. Tomishige, M., D. R. Klopfenstein, and R. D. Vale, Conversion of Unc104/KIF1A Kinesin into a Processive Motor After Dimerization. Science 297:2263-2267, 2002.

    Article  Google Scholar 

  56. Tomishige, M. and R. D. Vale, Controlling kinesin by reversible disulfide cross-linking. Identifying the motility-producing conformational change. J Cell Biol 151:1081-1092, 2000.

    Article  Google Scholar 

  57. Turner, J., R. Anderson, J. Guo, C. Beraud, R. Fletterick, and R. Sakowicz, Crystal structure of the mitotic spindle kinesin Eg5 reveals a novel conformation of the neck-linker. J Biol Chem 276:25496-25502, 2001.

    Article  Google Scholar 

  58. Valentine, M. T., P. M. Fordyce, T. C. Krzysiak, S. P. Gilbert, and S. M. Block, Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nat Cell Biol 8:470-476, 2006.

    Article  Google Scholar 

  59. Valiaev, A., D. W. Lim, T. G. Oas, A. Chilkoti, and S. Zauscher, Force-induced prolyl cis-trans isomerization in elastin-like polypeptides. J Am Chem Soc 129:6491-6497, 2007.

    Article  Google Scholar 

  60. Wolf, E., P. S. Kim, and B. Berger, MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci 6:1179-1189, 1997.

    Article  Google Scholar 

  61. Yardimci, H., M. van Duffelen, Y. Mao, S. S. Rosenfeld, and P. R. Selvin, The mitotic kinesin CENP-E is a processive transport motor. Proc Natl Acad Sci USA 105:6016-6021, 2008.

    Article  Google Scholar 

  62. Yildiz, A., M. Tomishige, A. Gennerich, and R. D. Vale, Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134:1030-1041, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Matthew L. Kutys and John Fricks for helpful discussions. This work was supported by NIH Grant R01-GM076476 (to W.O.H.) and NSF DMS-0714939 (J. Fricks, PI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William O. Hancock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariharan, V., Hancock, W.O. Insights into the Mechanical Properties of the Kinesin Neck Linker Domain from Sequence Analysis and Molecular Dynamics Simulations. Cel. Mol. Bioeng. 2, 177–189 (2009). https://doi.org/10.1007/s12195-009-0059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0059-5

Keywords

Navigation