Skip to main content

Advertisement

Log in

Critical roles of NOTCH1 in acute T-cell lymphoblastic leukemia

  • Progress in Hematology
  • Signaling and transcription in the development of leukemia
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

NOTCH1 plays a central role in T-cell development and, when aberrantly activated, in acute T-cell lymphoblastic leukemia (T-ALL). As a transmembrane receptor that is ultimately converted into a transcription factor, NOTCH1 directly activates a spectrum of target genes, which function to mediate NOTCH1 signaling in normal or transformed T cells. During physiologic T-cell development, NOTCH1 has important functions in cell fate determination, proliferation, survival and metabolism. Activating NOTCH1 mutations occur in more than half of human patients with T-ALL, suggesting an important role for aberrant NOTCH1 signaling in the pathogenesis of this disease. Inhibiting NOTCH1 signaling in patient-derived cell lines and murine T-ALLs leads to growth arrest and/or apoptosis suggesting that NOTCH1 inhibitors can improve T-ALL treatment. However, there are challenges to translate NOTCH1 inhibitors to the clinic because of toxicity and resistance. This review focuses on molecular mechanisms of oncogenic NOTCH1 signaling, molecular and functional analysis of NOTCH1 transcriptional targets in T-ALL, and recent advances in therapeutic targeting of NOTCH1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aster JC, Blacklow SC, Pear WS. Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. J Pathol. 2010;223(2):262–73.

    PubMed  PubMed Central  Google Scholar 

  3. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66(4):649–61.

    Article  CAS  PubMed  Google Scholar 

  4. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996;183(5):2283–91.

    Article  CAS  PubMed  Google Scholar 

  5. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.

    Article  CAS  PubMed  Google Scholar 

  6. Aster JC, Pear WS, Blacklow SC. Notch signaling in leukemia. Annu Rev Pathol. 2008;3:587–613.

    Article  CAS  PubMed  Google Scholar 

  7. Sanchez-Irizarry C, Carpenter AC, Weng AP, Pear WS, Aster JC, Blacklow SC. Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol Cell Biol. 2004;24(21):9265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell. 2004;16(4):509–20.

    Article  CAS  PubMed  Google Scholar 

  9. Stanley P, Okajima T. Roles of glycosylation in Notch signaling. Curr Top Dev Biol. 2010;92:131–64.

    Article  CAS  PubMed  Google Scholar 

  10. Rand MD, Grimm LM, Artavanis-Tsakonas S, Patriub V, Blacklow SC, Sklar J, et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol. 2000;20(5):1825–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin–metalloprotease TACE. Mol Cell. 2000;5(2):207–16.

    Article  CAS  PubMed  Google Scholar 

  12. Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998;393(6683):382–6.

    Article  CAS  PubMed  Google Scholar 

  13. Nam Y, Sliz P, Song L, Aster JC, Blacklow SC. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell. 2006;124(5):973–83.

    Article  CAS  PubMed  Google Scholar 

  14. Wilson JJ, Kovall RA. Crystal structure of the CSL–Notch–Mastermind ternary complex bound to DNA. Cell. 2006;124(5):985–96.

    Article  CAS  PubMed  Google Scholar 

  15. Fortini ME, Artavanis-Tsakonas S. The suppressor of hairless protein participates in notch receptor signaling. Cell. 1994;79(2):273–82.

    Article  CAS  PubMed  Google Scholar 

  16. Christensen S, Kodoyianni V, Bosenberg M, Friedman L, Kimble J. lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development. 1996;122(5):1373–83.

    CAS  PubMed  Google Scholar 

  17. Petcherski AG, Kimble J. LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature. 2000;405(6784):364–8.

    Article  CAS  PubMed  Google Scholar 

  18. Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet. 2000;26(4):484–9.

    Article  CAS  PubMed  Google Scholar 

  19. Petcherski AG, Kimble J. Mastermind is a putative activator for Notch. Curr Biol. 2000;10(13):R471–3.

    Article  CAS  PubMed  Google Scholar 

  20. Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev. 2002;16(11):1397–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wallberg AE, Pedersen K, Lendahl U, Roeder RG. p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol Cell Biol. 2002;22(22):7812–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gordon WR, Roy M, Vardar-Ulu D, Garfinkel M, Mansour, Aster JC, et al. Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. Blood. 2009;113(18):4381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC. Structural basis for autoinhibition of Notch. Nat Struct Mol Biol. 2007;14(4):295–300.

    Article  CAS  PubMed  Google Scholar 

  24. Sulis ML, Williams O, Palomero T, Tosello V, Pallikuppam S, Real PJ, et al. NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood. 2008;112(3):733–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007;204(8):1813–24.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007;204(8):1825–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiang MY, Xu L, Shestova O, Histen G, L’Heureux S, Romany C, et al. Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. J Clin Invest. 2008;118(9):3181–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ashworth TD, Pear WS, Chiang MY, Blacklow SC, Mastio J, Xu L, et al. Deletion-based mechanisms of Notch1 activation in T-ALL: key roles for RAG recombinase and a conserved internal translational start site in Notch1. Blood. 2010;116(25):5455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeannet R, Mastio J, Macias-Garcia A, Oravecz A, Ashworth T, Geimer Le Lay AS, et al. Oncogenic activation of the Notch1 gene by deletion of its promoter in Ikaros-deficient T-ALL. Blood. 2010;116(25):5443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arnett KL, Hass M, McArthur DG, Ilagan MX, Aster JC, Kopan R, et al. Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes. Nat Struct Mol Biol. 2010;17(11):1312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu H, Chi AW, Arnett KL, Chiang MY, Xu L, Shestova O, et al. Notch dimerization is required for leukemogenesis and T-cell development. Genes Dev. 2010;24(21):2395–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nam Y, Sliz P, Pear WS, Aster JC, Blacklow SC. Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription. Proc Natl Acad Sci USA. 2007;104(7):2103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bailey AM, Posakony JW. Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev. 1995;9(21):2609–22.

    Article  CAS  PubMed  Google Scholar 

  34. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA. 2006;103(48):18261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharma VM, Calvo JA, Draheim KM, Cunningham LA, Hermance N, Beverly L, et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol. 2006;26(21):8022–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20(15):2096–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chan SM, Weng AP, Tibshirani R, Aster JC, Utz PJ. Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood. 2007;110(1):278–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li X, Gounari F, Protopopov A, Khazaie K, von Boehmer H. Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1. J Exp Med. 2008;205(12):2851–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Demarest RM, Dahmane N, Capobianco AJ. Notch is oncogenic dominant in T-cell acute lymphoblastic leukemia. Blood. 2011;117(10):2901–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dudley DD, Wang HC, Sun XH. Hes1 potentiates T cell lymphomagenesis by up-regulating a subset of notch target genes. PLoS One. 2009;4(8):e6678.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wendorff AA, Koch U, Wunderlich FT, Wirth S, Dubey C, Bruning JC, et al. Hes1 is a critical but context-dependent mediator of canonical notch signaling in lymphocyte development and transformation. Immunity. 2010;33(5):671–84.

    Article  CAS  PubMed  Google Scholar 

  42. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13(10):1203–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Espinosa L, Cathelin S, D’Altri T, Trimarchi T, Statnikov A, Guiu J, et al. The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia. Cancer Cell. 2010;18(3):268–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ronchini C, Capobianco AJ. Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol. 2001;21(17):5925–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stahl M, Ge C, Shi S, Pestell RG, Stanley P. Notch1-induced transformation of RKE-1 cells requires up-regulation of cyclin D1. Cancer Res. 2006;66(15):7562–70.

    Article  CAS  PubMed  Google Scholar 

  46. Joshi I, Minter LM, Telfer J, Demarest RM, Capobianco AJ, Aster JC, et al. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood. 2008;113(8):1689–98.

    Article  PubMed  Google Scholar 

  47. Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q, et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell. 2003;4(6):451–61.

    Article  CAS  PubMed  Google Scholar 

  48. Murata K, Hattori M, Hirai N, Shinozuka Y, Hirata H, Kageyama R, et al. Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol. 2005;25(10):4262–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dohda T, Maljukova A, Liu L, Heyman M, Grander D, Brodin D, et al. Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines. Exp Cell Res. 2007;313(14):3141–52.

    Article  CAS  PubMed  Google Scholar 

  50. Amati B, Alevizopoulos K, Vlach J. Myc and the cell cycle. Front Biosci. 1998;3:d250–68.

    Article  CAS  PubMed  Google Scholar 

  51. Barbash O, Egan E, Pontano LL, Kosak J, Diehl JA. Lysine 269 is essential for cyclin D1 ubiquitylation by the SCF(Fbx4/alphaB-crystallin) ligase and subsequent proteasome-dependent degradation. Oncogene. 2009;28(49):4317–25.

    Article  CAS  PubMed  Google Scholar 

  52. Kim JK, Diehl JA. Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol. 2009;220(2):292–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F, et al. Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med. 2007;13(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  54. Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle. 2008;7(8):965–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ciofani M, Zuniga-Pflucker JC. Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol. 2005;6(9):881–8.

    Article  CAS  PubMed  Google Scholar 

  56. Reizis B, Leder P. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev. 2002;16(3):295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sade H, Krishna S, Sarin A. The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells. J Biol Chem. 2004;279(4):2937–44.

    Article  CAS  PubMed  Google Scholar 

  58. González-García S, García-Peydró M, Martín-Gayo E, Ballestar E, Esteller M, Bornstein R, de la Pompa JL, Ferrando AA, Toribio ML. CSL–MAML-dependent Notch1 signaling controls T lineage–specific IL-7Rα gene expression in early human thymopoiesis and leukemia. J Exp Med. 2009;206(4):779–91.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Johnson SE, Shah N, Bajer AA, LeBien TW. IL-7 activates the phosphatidylinositol 3-kinase/AKT pathway in normal human thymocytes but not normal human B cell precursors. J Immunol. 2008;180(12):8109–17.

    Article  CAS  PubMed  Google Scholar 

  60. Ferrando AA. The role of NOTCH1 signaling in T-ALL. Hematol Am Soc Hematol Educ Program. 2009;2009:353-61.

  61. Palomero T, Ferrando A. Therapeutic targeting of NOTCH1 signaling in T-cell acute lymphoblastic leukemia. Clin Lymphoma Myeloma. 2009;9(Suppl 3):S205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC, et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol. 2003;23(2):655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Deangelo D, Stone R, Silverman L, Stock W, Attar E, Fearen I, et al. A phase I lymphoblastic leukemia/lymphoma (T-ALL)n and other leukemias. J Clin Oncol. ASCO Annual Meeting Proceedings Part I. 2006;24(18S).

  64. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435(7044):959–63.

    Article  PubMed  Google Scholar 

  65. Tammam J, Ware C, Efferson C, O’Neil J, Rao S, Qu X, et al. Down-regulation of the Notch pathway mediated by a gamma-secretase inhibitor induces anti-tumour effects in mouse models of T-cell leukaemia. Br J Pharmacol. 2009;158(5):1183–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, et al. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010;464(7291):1052–7.

    Article  CAS  PubMed  Google Scholar 

  67. Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, et al. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009;462(7270):182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Real PJ, Ferrando AA. NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia. Leukemia. 2009;23(8):1374–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, de Stanchina E, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  70. Cullion K, Draheim KM, Hermance N, Tammam J, Sharma VM, Ware C, et al. Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood. 2009;113(24):6172–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Westhoff B, Colaluca IN, D’Ario G, Donzelli M, Tosoni D, Volorio S, et al. Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci USA. 2009;106(52):22293–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shimizu D, Taki T, Utsunomiya A, Nakagawa H, Nomura K, Matsumoto Y, et al. Detection of NOTCH1 mutations in adult T-cell leukemia/lymphoma and peripheral T-cell lymphoma. Int J Hematol. 2007;85(3):212–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institute of Health to W.S.P. (R01AI047833, P01CA119070) and a Leukemia and Lymphoma Society SCOR Award to W.S.P. H.L. was provided with an NIH-funded Institutional Research Training Grant (T32-DK07780) and a Fellow Award from the Lymphoma Research Foundation. M.Y.C. received a career development award from the NCI (K08 CA120544-01).

Conflict of interest

The authors declare no relevant affiliations or financial involvement with any organizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hudan Liu or Mark Y. Chiang.

About this article

Cite this article

Liu, H., Chiang, M.Y. & Pear, W.S. Critical roles of NOTCH1 in acute T-cell lymphoblastic leukemia. Int J Hematol 94, 118–125 (2011). https://doi.org/10.1007/s12185-011-0899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-011-0899-3

Keywords

Navigation