Skip to main content

Advertisement

Log in

Agroenergy Crops Influence the Diversity, Biomass, and Guild Structure of Terrestrial Arthropod Communities

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Expanded production of contemporary bioenergy crops (e.g., corn) is considered a threat to the conservation of biodiversity, yet next-generation perennially based crops (switchgrass, mixed-grass–forb prairie) may represent an opportunity for enhancing biodiversity in agricultural landscapes. We employed a multi-scaled approach to investigate the relative importance of feedstock selection, forb content, patch size, and landscape-scale habitat structure and composition as factors shaping the diversity and abundance of terrestrial arthropod communities and the biomass of functional groups of arthropods associated with the provisioning of ecosystem services. Compared to intensively managed annual corn fields, switchgrass and mixed-grass–forb prairie plantings were associated with a 230% and 324% increase in arthropod family diversity and a 750% and 2,700% increase in arthropod biomass, respectively. Biomass of arthropod pollinators, herbivores, predators, and parasites were similarly the highest in mixed-grass–forb prairie, intermediate in switchgrass plantings, and the lowest in cornfields. Community-wide biomass and that of several functional arthropod groups were positively linked to increasing forest cover and land cover diversity surrounding biomass plantings, while pollinator and detritivore biomass was lower in smaller fields. Results not only suggest that the choice of biomass feedstock will play an important role in shaping within-field arthropod diversity but also indicate an important role for the composition of this surrounding landscape. Collectively, our results suggest that selection of perennially based biomass feedstocks along with careful attention to crop placement have important potential to enhance biodiversity conservation and the provisioning of ecologically and economically important arthropod-mediated ecosystem services in future agricultural landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM et al (2008) Sustainable biofuels redux. Science 322:49–50

    Article  PubMed  CAS  Google Scholar 

  2. Fargione JE, Cooper TR, Flaspohler DJ, Hill J, Lehman C, McCoy T et al (2009) Bioenergy and wildlife: threats and opportunities for grassland conservation. Bioscience 59:767–777

    Article  Google Scholar 

  3. Fletcher RJ, Robertson BA, Evans J, Doran P, Alavalapati J, Schemske D (2011) Biodiversity conservation in the era of biofuels: risks and opportunities. Front Ecol Environ 9:161–168

    Article  Google Scholar 

  4. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  PubMed  CAS  Google Scholar 

  5. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trees 18:182–188

    Google Scholar 

  6. Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    Article  PubMed  CAS  Google Scholar 

  7. Bianchi F, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc Roy Soc London B 273:1715–1727

    Article  CAS  Google Scholar 

  8. Landis DA, Gardiner MA, Van Der Werf W, Swinton SM (2008) Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. PNAS 105:20552–20557

    Article  PubMed  CAS  Google Scholar 

  9. Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A et al (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:1121

    Article  Google Scholar 

  10. US Congress (2007) Energy Independence and Security Act of 2007. http://www.govtrack.us/congress/billtext.xpd?bill=h110-6. Accessed 26 May 2009

  11. West T, Dunphy-Guzman K, Sun A, Malczynski L, Reichmuth D, Larson R et al (2009) Feasibility, economics, and environmental impact of producing 90 billion gallons of ethanol per year by 2030. Sandia National Laboratories, Livermore

    Google Scholar 

  12. McDonald RI, Fargione J, Kiesecker J, Miller WM, Powell J (2009) Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS One 4:e6802

    Article  PubMed  Google Scholar 

  13. Noss RF, Laroe ET, Scott JM (1995) Endangered ecosystems of the United States: a preliminary assessment of loss and degradation. Report no. 0611-R-01 (MF). National Biological Service, Washington, DC

    Google Scholar 

  14. Isaacs R, Tuell J, Fiedler A, Gardiner M, Landis D (2009) Maximizing arthropod-mediated ecosystem services in agricultural landscapes: the role of native plants. Front Ecol Environ 7:196–203

    Article  Google Scholar 

  15. Daily GC, Polasky S, Goldstein J, Kareiva PM, Mooney HA, Pejchar L et al (2009) Ecosystem services in decision making: time to deliver. Front Ecol Environ 7:21–28

    Article  Google Scholar 

  16. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR et al (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7:4–11

    Article  Google Scholar 

  17. Landis DA, Werling BP (2010) Arthropods and biofuel production systems in North America. Insect Sci 17:220–236

    Article  Google Scholar 

  18. Bonkowski M, Jentschke G, Scheu S (2001) Contrasting effects of microbes in the rhizosphere: interactions of mycorrhiza (Paxillus involutus (Batsch) Fr.), naked amoebae (Protozoa) and Norway Spruce seedlings (Picea abies Karst.). Appl Soil Ecol 18:193–204

    Article  Google Scholar 

  19. Partsch S, Milcu A, Scheu S (2006) Decomposers (Lumbricadae, Collembola) affect plant performance in model grasslands of different diversity. Ecology 87:2548–2558

    Article  PubMed  Google Scholar 

  20. Gardiner MM, Tuell JK, Isaacs R, Gibbs J, Ascher JS, Landis DA (2010) Implications of three model biofuel crops for beneficial arthropods in agricultural landscapes. Bioenergy Res 3:6–19

    Article  Google Scholar 

  21. Werling BP, Meehan T, Robertson BA, Gratton C, Landis DA (2011) Biocontrol potential varies with changes in biofuel-crop plant communities and landscape perenniality. GCB Bioenergy 3:347–359

    Article  Google Scholar 

  22. Dauber JS, Jones MB, Stout JC (2010) The impact of biomass crop cultivation on temperate biodiversity. GCB Bioenergy 2:289–309

    Article  Google Scholar 

  23. Gardiner MM, Landis DA, Gratton C, DiFonzo CD, O’Neal M, Chacon JM et al (2009) Landscape diversity enhances the biological control of an introduced crop pest in the north-central U.S. Ecol Appl 19:143–154

    Article  PubMed  CAS  Google Scholar 

  24. Robertson BA, Doran PJ, Loomis ER, Robertson JR, Schemske DW (2011) Avian use of perennial biomass feedstocks as post-breeding and migratory stopover habitat. PLoS One 6:e16941

    Article  PubMed  CAS  Google Scholar 

  25. Robertson BA, Doran PJ, Robertson JR, Loomis ER, Schemske DW (2011) Perennial biomass feedstocks enhance avian diversity. GCB Bioenergy 3:235–246

    Article  Google Scholar 

  26. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600

    Article  PubMed  CAS  Google Scholar 

  27. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Harwood JD, Sunderland KD, Symondson WOC (2001) Living where the food is: web location by linyphiid spiders in relation to prey availability in winter wheat. J Appl Ecol 38:88–99

    Article  Google Scholar 

  29. Thomas CFG, Parksinson L, Griffiths GJK, Fernandez Garcia A, Marshall EJP (2001) Aggregation and temporal stability of carabid beetle distributions in field and hedgerow habitats. J Appl Ecol 38:100–116

    Article  Google Scholar 

  30. Saint-Germain M, Buddle CM, Larrivee M, Mercado A, Motchula T, Reichert E et al (2007) Should biomass be considered more frequently as a currency in terrestrial arthropod community analyses? J Appl Ecol 44:330–339

    Article  Google Scholar 

  31. Johnson NF, Triplehorn CA (2004) Borror and DeLong’s introduction to the study of insects, 7th edn. Thomson Brooks/Cole, Melbourne

    Google Scholar 

  32. Rogers LE, Hinds WT, Buschbom RL (1976) A general weight vs. length relationship for insects. Ann Entomol Soc Am 69:387–389

    Google Scholar 

  33. Hódar JA (1996) The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Ecol 17:421–433

    Google Scholar 

  34. Oksanen J, Blanchet G, Kindt R, Legendre P, O’Hara RB, Simpson GL et al (2010) vegan: Community Ecology Package. R package version 1.17-2. http://CRAN.R-project.org/package=vegan

  35. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Version 2.12.1. ISBN 3-900051-12-7. http://www.R-project.org

  36. Daubenmire R (1959) A canopy-coverage method of vegetation analysis. Northwest Sci 33:43–64

    Google Scholar 

  37. Summerville KS, Crist TO (2003) Determinants of lepidopteran community composition and species diversity in eastern deciduous forests: roles of season, eco-region and patch size. Oikos 100:134–148

    Article  Google Scholar 

  38. USDA (2010) 2009 cropland data layer. National Agricultural Statistics Service, Washington, DC

    Google Scholar 

  39. ESRI (2008) ArcGIS. ESRI, Redlands

    Google Scholar 

  40. Rempel R (2010) Patch Analyst 4.2, Thunder Bay, Ontario Canada, Centre for Northern Forest Ecosystem Research. http://flash.lakeheadu.ca/~rrempel/patch/

  41. Ver Hoef JM, Boveng PL (2007) Quasi-poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology 88:2766–2772

    Article  PubMed  Google Scholar 

  42. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  43. Legendre P, Vaudor A (1991) The R Package: multidimensional analysis, spatial analysis. Department of Biological Sciences, University of Montréal, Montréal

    Google Scholar 

  44. Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JMH, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039

    Article  PubMed  Google Scholar 

  45. Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops JMH (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158:17–35

    Article  PubMed  CAS  Google Scholar 

  46. Rundolf M, Smith HG (2006) The effect of organic farming on butterfly diversity depends on landscape context. J Appl Ecol 43:1121–1127

    Article  Google Scholar 

  47. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecol Appl 12:354–363

    Google Scholar 

  48. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  49. Whiles MR, Charlton RE (2006) The ecological significance of tallgrass prairie arthropods. Ann Rev Entomol 51:387–412

    Article  CAS  Google Scholar 

  50. Chapman SK, Hart SC, Cobb NS, Whitham TG, Koch GW (2003) Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84:2867–2876

    Article  Google Scholar 

  51. Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268

    Article  Google Scholar 

  52. Masters GJ, Brown VK, Gange AC (1993) Plant-mediated interactions between aboveground and belowground insect herbivores. Oikos 66:148–151

    Article  Google Scholar 

  53. Wareing PF, Khalifa MM, Treharne KJ (1968) Rate-limiting processes in photosynthesis at saturating light intensities. Nature 220:453–457

    Article  PubMed  CAS  Google Scholar 

  54. Letourneau DK, Dyer LA (1998) Experimental test in lowland tropical forest shows top-down effects through four trophic levels. Ecology 79:1678–1687

    Article  Google Scholar 

  55. Malmqvist B (1993) Interactions in stream leaf packs: effects of a stonefly predator on detritivores and organic matter processing. Oikos 66:454–462

    Article  Google Scholar 

  56. Moron RA, Dirzo R, Jaramillo VJ (1997) Defoliation and below-ground herbivory in the grass Muhlenbergia quadridentata: effects on plant performance and on the root-feeder Phyllophaga sp. (Coleoptera, Melolonthidae). Oecologia 110:237–242

    Article  Google Scholar 

  57. Kevan PG, Greco CG, Belaoussoff S (1997) Log-normality of biodiversity and abundance in diagnosis and measuring of ecosystemic health: pesticide stress on pollinators on blueberry heaths. J Appl Ecol 34:1122–1136

    Article  Google Scholar 

  58. Ricketts TH (2004) Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol 18:1262–1271

    Article  Google Scholar 

  59. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. PNAS 99:16812–16816

    Article  PubMed  CAS  Google Scholar 

  60. Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46

    Article  Google Scholar 

  61. Seastedt TR, Crossley DAJ (1984) The influence of arthropods on ecosystems. Bioscience 34:157–161

    Article  Google Scholar 

  62. Bang HS, Lee JH, Kwon OS, Na YE, Jang YS, Kim WH (2005) Effects of paracoprid dung beetles (Coleoptera: Scarabaeidae) on the growth of pasture herbage and on the underlying soil. Appl Soil Ecol 29:165–171

    Article  Google Scholar 

  63. Andow DA (1991) Vegetational diversity and arthropod population response. Ann Rev Entomol 36:561–586

    Article  Google Scholar 

  64. Blossey B, Hunt-Joshi TR (2003) Belowground herbivory by insects: influence on plants and aboveground herbivores. Ann Rev Entomol 48:521–547

    Article  CAS  Google Scholar 

  65. USDA (2008) Crop production 2007 summary CrPr2-2(8-08). National Agricultural Statistics Service, Washington, DC

    Google Scholar 

  66. Meehan, TD, Werling BP, Landis DA, Gratton C (2011) Agricultural landscape simplification and insecticide use in the Midwestern U.S. PNAS. doi:10.1073/pnas.1100751108

  67. Bjӧrkman C, Bommarco R, Eklund K, Höglund S (2004) Harvesting disrupts biological control of herbivores in a short-rotation coppice system. Ecol Appl 14:1624–1633

    Article  Google Scholar 

  68. Garlock R, Bals B, Jasrotia P, Balan V, Dale BE (2011) Influence of botanical classification on the saccharification of cellulosic mixed-species feedstocks with comparison to corn stover. Biomass Bioenergy (in press)

Download references

Acknowledgments

This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494 and DOE OBP Office of Energy Efficiency and Renewable Energy DE-AC05-76RL01830). BAR was supported by a fellowship from the Smithsonian Conservation Biology Institute, National Zoological Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Robertson.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

(DOC 154 kb)

Figure S1

(DOC 276 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, B.A., Porter, C., Landis, D.A. et al. Agroenergy Crops Influence the Diversity, Biomass, and Guild Structure of Terrestrial Arthropod Communities. Bioenerg. Res. 5, 179–188 (2012). https://doi.org/10.1007/s12155-011-9161-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9161-3

Keywords

Navigation