Skip to main content
Log in

Rapid Assessment of Lignin Content and Structure in Switchgrass (Panicum virgatum L.) Grown Under Different Environmental Conditions

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Switchgrass (Panicum virgatum L.) is a candidate feedstock in bioenergy, and plant breeding and molecular genetic strategies are being used to improve germplasm. In order to assess these subsequent modifications, baseline biomass compositional data are needed in a relevant variety of environments. In this study, switchgrass cv. Alamo was grown in the field, greenhouse, and growth chamber and harvested into individual leaf and stem tissue components. These components were analyzed with pyrolysis vapor analysis using molecular beam mass spectrometry, Fourier transform infrared, and standard wet chemistry methods to characterize and compare the composition among the different growth environments. The details of lignin content, S/G ratios, and degree of cross-linked lignin are discussed. Multivariate approaches such as projection to latent structures regression found a very strong correlation between the lignin content obtained by standard wet chemistry methods and the two high throughput techniques employed to rapidly assess lignin in potential switchgrass candidates. The models were tested on unknown samples and verified by wet chemistry. The similar lignin content found by the two methods shows that both approaches are capable of determining lignin content in biomass in a matter of minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

FTIR:

Fourier transform infrared spectroscopy

L1, L2, etc.:

Leaf tissue 1, Leaf tissue 2, etc.

PLS:

Projection to latent structures

PyMBMS:

Pyrolysis vapor analysis using molecular beam mass spectrometry

RMSEC:

Root mean square error of calibration

RMSEP:

Root mean square error of prediction

S1, S2, etc.:

Stem tissue 1, Stem tissue 2, etc.

SD:

Standard deviation

References

  1. Bransby DI, Ward CY, Rose PA, Sladden SE, Kee DD (1989) Biomass production from selected herbaceous species in the Southeastern USA. Biomass 20(1–2):187–197

    Article  Google Scholar 

  2. McLaughlin SB, Ugarte DGDL, Garten CT, Lynd LR, Sanderson MA, Tolbert VR et al (2002) High-value renewable energy from prairie grasses. Environ Sci Technol 36(10):2122–2129

    Article  PubMed  CAS  Google Scholar 

  3. Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. PNAS 105(2):464–469

    Article  PubMed  Google Scholar 

  4. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R et al (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169–172

    Article  PubMed  CAS  Google Scholar 

  5. Chen L, Auh C, Chen F, Cheng X, Aljoe H, Dixon RA et al (2002) Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem 50(20):5558–5565

    Article  PubMed  CAS  Google Scholar 

  6. Dixon RA, Chen F, Guo D, Parvathi K (2001) The biosynthesis of monolignols: a “metabolic grid”, or independent pathways to guaiacyl and syringyl units? Phytochemistry 57(7):1069–1084

    Article  PubMed  CAS  Google Scholar 

  7. Vogel KP, Pedersen JF, Masterson SD, Toy JJ (1999) Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Sci 39(1):276–279

    Article  Google Scholar 

  8. Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13(8):421–429

    Article  PubMed  CAS  Google Scholar 

  9. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9(6):433–443

    Article  PubMed  CAS  Google Scholar 

  10. Alexandrova KS, Denchev PD, Conger BV (1996) Micropropagation of switchgrass by node culture. Crop Sci 36(6):1709–1711

    PubMed  CAS  Google Scholar 

  11. Denchev PD, Conger BV (1994) Plant-regeneration from callus-cultures of switchgrass. Crop Sci 34(6):1623–1627

    Article  Google Scholar 

  12. Richards HA, Rudas VA, Sun H, McDaniel JK, Tomaszewski Z, Conger BV (2001) Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Rep 20(1):48–54

    Article  CAS  Google Scholar 

  13. Somleva MN, Tomaszewski Z, Conger BV (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci 42(6):2080–2087

    CAS  Google Scholar 

  14. Tobias CM, Twigg P, Hayden DM, Vogel KP, Mitchell RM, Lazo GR et al (2005) Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theor Appl Genet 111(5):956–964

    Article  PubMed  Google Scholar 

  15. Alexandrova KS, Denchev PD, Conger BV (1996) In vitro development of inflorescences from switchgrass nodal segments. Crop Sci 36(1):175–178

    Article  Google Scholar 

  16. Denchev PD, Conger BV (1995) In-vitro culture of switchgrass—influence of 2, 4-D and picloram in combination with benzyladenine on callus initiation and regeneration. Plant Cell Tiss Org 40(1):43–48

    Article  CAS  Google Scholar 

  17. Sladden SE, Bransby DI, Aiken GE (1991) Biomass yield, composition and production costs for 8 switchgrass varieties in Alabama. Biomass Bioenerg 1(2):119–122

    Article  Google Scholar 

  18. Adler PR, Sanderson MA, Boateng AA, Weimer PI, Jung HJG (2006) Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J 98(6):1518–1525

    Article  CAS  Google Scholar 

  19. Dien BS, Jung HJG, Vogel KP, Casler MD, Lamb JFS, Iten L et al (2006) Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenerg 30(10):880–891

    Article  CAS  Google Scholar 

  20. Grabber JH, Jung GA, Hill RR (1991) Chemical-composition of parenchyma and sclerenchyma cell-walls isolated from orchardgrass and switchgrass. Crop Sci 31(4):1058–1065

    Article  CAS  Google Scholar 

  21. Law KN, Kokta BV, Mao CB (2001) Fibre morphology and soda-sulphite pulping of switchgrass. Bioresource Technol 77(1):1–7

    Article  CAS  Google Scholar 

  22. El-Nashaar HM, Banowetz GM, Griffith SM, Casler MD, Vogel KP (2009) Genotypic variability in mineral composition of switchgrass. Bioresource Technol 100(5):1809–1814

    Article  CAS  Google Scholar 

  23. Sarath G, Mitchell RB, Sattler SE, Funnell D, Pedersen JF, Graybosch RA et al (2008) Opportunities and roadblocks in utilizing forages and small grains for liquid fuels. J Ind Microbiol Biotechnol 35(5):343–354

    Article  PubMed  CAS  Google Scholar 

  24. Sarath G, Baird LM, Vogel KP, Mitchell RB (2007) Internode structure and cell wall composition in maturing tillers of switchgrass (Panicum virgatum. L). Bioresource Technol 98(16):2985–2992

    Article  CAS  Google Scholar 

  25. Meuzelaar HLC, Haverkamp J, Hileman FD (1982) Pyrolysis mass spectrometry of recent and fossil biomaterials. Elsevier, New York

    Google Scholar 

  26. Goodacre R, Timmins EM, Burton R, Kaderbhai N, Woodward AM, Kell DB et al (1998) Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiol-UK 144:1157–1170

    Article  CAS  Google Scholar 

  27. Smedsgaard J, Frisvad JC (1996) Using direct electrospray mass spectrometry in taxonomy and secondary metabolite profiling of crude fungal extracts. J Microbiol Meth 25(1):5–17

    Article  CAS  Google Scholar 

  28. van Baar BLM (2000) Characterization of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry. FEMS Microbiol Rev 24(2):193–219

    Article  PubMed  Google Scholar 

  29. del Rio JC, Gutiérrez A, Romero J, Martínez MJ, Martínez AT (2001) Identification of residual lignin markers in eucalypt kraft pulps by Py-GC/MS. J Anal Appl Pyrol 58–59:425–439

    Google Scholar 

  30. Faix O, Bremer J, Schmidt O, Stevanovic T (1991) Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis–gas chromatography and Fourier-transform infrared spectroscopy. J Anal Appl Pyrol 21:147–162

    Article  CAS  Google Scholar 

  31. Faix O, Meier D, Grobe I (1987) Studies on isolated lignins and lignins in woody materials by pyrolysis–gas chromatography–mass spectrometry and off-line pyrolysis–gas chromatography with flame ionization detection. J Anal Appl Pyrol 11:403–416

    Article  CAS  Google Scholar 

  32. Izumi A, Kuroda K, Ohi H, Yamaguchi A (1995) Structural analysis of lignin by pyrolysis–gas chromatography. III. Comparative studies of pyrolysis–gas chromatography and nitrobenzene oxidation for the determination method of lignin comosition in hardwood. Jpn Tappi 49(9):1339–1346

    CAS  Google Scholar 

  33. Martin F, Saiz-Jimenez C, Gonzalez-Vila FJ (1979) Pyrolysis–gas chromatography–mass spectrometry of lignins. Holzforschung 33(6):210–212

    Article  CAS  Google Scholar 

  34. Rodrigues J, Graca J, Pereira H (2001) Influence of tree eccentric growth on syringyl/guaiacyl ratio in Eucalyptus globulus wood lignin assessed by analytical pyrolysis. J Anal Appl Pyrol 58–59:481–489

    Article  Google Scholar 

  35. Rodrigues J, Meier D, Faix O, Pereira H (1999) Determination of tree-to-tree variation in syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by analytical pyrolysis. J Anal Appl Pyrol 48(2):121–128

    Article  CAS  Google Scholar 

  36. Sonoda T, Ona T, Yokoi H, Ishida Y, Ohtani H, Tsuge S (2001) Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples. Anal Chem 73(22):5429–5435

    Article  PubMed  CAS  Google Scholar 

  37. Agblevor FA, Evans RJ, Johnson KD (1994) Molecular-beam mass-spectrometric analysis of lignocellulosic materials. 1. Herbaceous biomass. J Anal Appl Pyrol 30(2):125–144

    Article  CAS  Google Scholar 

  38. Davis MF, Megraw R, Sewell M, Evans R, Neale D, West D, et al (1999) Application of pyrolysis molecular beam mass spectrometry for the determination of loblolly pine and hybrid poplar cell wall composition. Paper presented at the TAPPI Pulping Conference, Orlando, FL, 31 October–4 November 1999 3: 1077–1081

  39. Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. 2. Applications. Energ Fuel 1(4):311–319

    Article  CAS  Google Scholar 

  40. Evans RJ, Milne TA, Soltys MN (1986) Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels. III. Primary pyrolysis of lignin. J Anal Appl Pyrol 9(3):207–236

    Article  CAS  Google Scholar 

  41. Kelley SS, Jellison J, Goodell B (2002) Use of NIR and pyrolysis-MBMS coupled with multivariate analysis for detecting the chemical changes associated with brown-rot biodegradation of spruce wood. FEMS Microbiol Lett 209(1):107–111

    Article  PubMed  CAS  Google Scholar 

  42. Davis MF, Tuskan GA, Payne P, Tschaplinski TJ, Meilan R (2006) Assessment of Populus wood chemistry following the introduction of a Bt toxin gene. Tree Physiol 26(5):557–564

    PubMed  CAS  Google Scholar 

  43. Sykes R, Kodrzycki B, Tuskan GA, Foutz K, Davis M (2008) Within tree variability of lignin composition in Populus. Wood Sci Technol 42(8):649–661

    Article  CAS  Google Scholar 

  44. Labbé N, Rials TG, Kelley SS, Cheng ZM, Kim JY, Li Y (2005) FT-IR imaging and pyrolysis–molecular beam mass spectrometry: new tools to investigate wood tissues. Wood Sci Technol 39(1):61–76

    Article  CAS  Google Scholar 

  45. Chen L, Carpita NC, Reiter WD, Wilson RH, Jeffries C, McCann MC (1998) A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant J 16(3):385–92

    Article  PubMed  CAS  Google Scholar 

  46. Kataoka Y, Kondo T (1999) Quantitative analysis for the cellulose I alpha crystalline phase in developing wood cell walls. Int J Biol Macromol 24(1):37–41

    Article  PubMed  CAS  Google Scholar 

  47. Moore KJ, Moser LE, Vogel KP, Waller SS, Johnson BE, Pedersen JF (1991) Describing and quantifying growth stages of perennial forage grasses. Agron J 83(6):1073–1077

    Article  Google Scholar 

  48. Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass. Energ Fuel 1(2):123–137

    Article  CAS  Google Scholar 

  49. Tuskan G, West D, Bradshaw HD, Neale D, Sewell M, Wheeler N et al (1999) Two high-throughput techniques for determining wood properties as part of a molecular genetics analysis of hybrid poplar and loblolly pine. Appl Biochem Biotechnol 77(1–3):55–65

    Article  Google Scholar 

  50. Shin EJ, Hajaligol MR, Rasouli F (2003) Characterizing biomatrix materials using pyrolysis molecular beam mass spectrometer and pattern. J Anal Appl Pyrol 68–69:213–229

    Article  CAS  Google Scholar 

  51. Stewart D, Yahiaoui N, McDougall GJ, Myton K, Marque C, Boudet AM et al (1997) Fourier-transform infrared and Raman spectroscopic evidence for the incorporation of cinnamaldehydes into the lignin of transgenic tobacco (Nicotiana tabacum L.) plants with reduced expression of cinnamyl alcohol dehydrogenase. Planta 201(3):311–318

    Article  PubMed  CAS  Google Scholar 

  52. Zhong R, Morrison WH III, Himmelsbach DS, Poole FL II, Ye Z-H (2000) Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124(2):563–577

    Article  PubMed  CAS  Google Scholar 

  53. Jung HJG, Vogel KP (1992) Lignification of switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) plant-parts during maturation and its effect on fiber degradability. J Sci Food Agr 59(2):169–176

    Article  CAS  Google Scholar 

  54. Okuyama T, Takeda H, Yamamoto H (1998) Relation between growth stress and lignin concentration in the cell wall: ultraviolet microscopic spectral analysis. J Wood Sci 44(2):83–89

    Article  CAS  Google Scholar 

  55. Yeh T-F, Goldfarb B, Chang H-M, Peszlen I, Braun JL, Kadla JF (2005) Comparison of morphological and chemical properties between juvenile wood and compression wood of loblolly pine. Holzforschung 59(6):669–674

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Mitra Mazarei and Murali Raghavendra for input on the manuscript. This work was funded by the Southeastern Sun Grant Initiative grant number DOT 0T0S5907G00050 and the Bioenergy Science Center (BESC). BESC is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Labbé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, D.G.J., Labbé, N., Sykes, R.W. et al. Rapid Assessment of Lignin Content and Structure in Switchgrass (Panicum virgatum L.) Grown Under Different Environmental Conditions. Bioenerg. Res. 2, 246–256 (2009). https://doi.org/10.1007/s12155-009-9054-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-009-9054-x

Keywords

Navigation