Skip to main content
Log in

Genetics and Genomics of the Genus Amycolatopsis

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Actinobacteria are gram-positive filamentous bacteria which contains some of the most deadly human pathogens (Mycobacterium tuberculosis, M. leprae, Corynebacterium diphtheriae, Nocardia farcinica), plant pathogens (Streptomyces scabies, Leifsonia xyli) along with organisms that produces antibiotic (Streptomycetes, Amycolatopsis, Salinospora). Interestingly, these bacteria are equipped with an extraordinary capability of producing antibiotics and other metabolites which have medicinal properties. With the advent of inexpensive genome sequencing techniques and their clinical importance, many genomes of Actinobacteria have been successfully sequenced. These days, with the constant increasing number of drug-resistant bacteria, the urgent need for discovering new antibiotics has emerged as a major scientific challenge. And, unfortunately the traditional method of screening bacterial strains for the production of antibiotics has decreased leading to a paradigm shift in the planning and execution of discovery of novel biosynthetic gene clusters via genome mining process. The entire focus has shifted to the evaluation of genetic capacity of organisms for metabolite production and activation of cryptic gene clusters. This has been made possible only due to the availability of genome sequencing and has been augmented by genomic studies and new biotechnological approaches. Through this article, we present the analysis of the genomes of species belonging to the genus Amycolatopsis, sequenced till date with a focus on completely sequenced genomes and their application for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data from Nigam et al. [4]; Peano et al. [5]

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548. doi:10.1128/MMBR.00005-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frasch HJ, Kalan L, Kilian R, Martin T, Wright GD, Stegmann E (2015) Alternative pathway to a glycopeptide-resistant cell wall in the balhimycin producer Amycolatopsis balhimycina. ACS Infect Dis 1:243–252. doi:10.1021/acsinfecdis.5b00011

    Article  CAS  Google Scholar 

  3. Xu L, Huang H, Wei W, Zhong Y, Tang B, Yuan H, Zhu L, Huang W, Ge M, Yang S, Zheng H, Jiang W, Chen D, Zhao GP, Zhao W (2014) Complete genome sequence and comparative analyses of the vancomycin-producing Amycolatopsis orientalis. BMC Genom 15:363. doi:10.1186/1471-2164-15-363

    Article  Google Scholar 

  4. Nigam A, Almabruk KH, Saxena A, Yang J, Mukherjee U, Kaur H, Kohli P, Kumari R, Singh P, Zakharov LN, Singh Y, Mahmud T, Lal R (2014) Modification of rifamycin polyketide backbone leads to improved drug activity against rifampicin-resistant Mycobacterium tuberculosis. J Biol Chem 289:21142–21152. doi:10.1074/jbc.M114.572636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peano C, Damiano F, Forcata M, Pietrelli A, Palumbo C, Corti G, Siculella L, Fuligni F, Tagliazucchi GM, De Benedetto GE, Bicciato S, De Bellis G, Alifano P (2014) Comparative genomics revealed key molecular targets to rapidly convert a reference rifamycin-producing bacterial strain into an overproducer by genetic engineering. Metabol Eng 26:1–16. doi:10.1016/j.ymben.2014.08.001

    Article  CAS  Google Scholar 

  6. Sharma M (2014) Actinomycetes: source, identification, and their applications. Int J Curr Microbiol Appl Sci 3:801832. http://www.ijcmas.com/vol-3-2/Mukesh%20Sharma.pdf

  7. Bandyopadhyay D, Das K, Sen SK (2016) Exploration of extracellular phytase production by Amycolatopsis vancoresmycina S-12 in submerged fermentation. Int J Curr Microbiol Appl Sci 5:478–487. doi:10.20546/ijcmas.2016.501.048

    Article  Google Scholar 

  8. Kshirsagar SD, Saratale GD, Saratale RG, Govindwar SP, Oh MK (2016) An isolated Amycolatopsis sp. GDS for cellulase and xylanase production using agricultural waste biomass. J Appl Microbiol 120:112–125. doi:10.1111/jam.12988

    Article  CAS  PubMed  Google Scholar 

  9. Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: Fiechter A (ed) History of modern biotechnology I. Springer, Berlin, pp 1–39

    Chapter  Google Scholar 

  10. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417:141–147. doi:10.1038/417141a

    Article  PubMed  Google Scholar 

  11. Tang B, Zhao W, Zheng H, Zhuo Y, Zhang L, Zhao GP (2012) Complete genome sequence of Amycolatopsis mediterranei S699 based on de novo assembly via a combinatorial sequencing strategy. J Bacteriol 194:5699–5700. doi:10.1128/JB.01295-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Verma M, Kaur J, Kumar M, Kumari K, Saxena A, Anand S, Nigam A, Ravi V, Raghuvanshi S, Khurana P, Tyagi AK, Khurana JP, Lal R (2011) Whole genome sequence of the rifamycin B-producing strain Amycolatopsis mediterranei S699. J Bacteriol 193:5562–5563. doi:10.1128/JB.05819-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao W, Zhong Y, Yuan H, Wang J, Zheng H, Wang Y, Cen X, Xu F, Bai J, Han X, Lu G, Zhu Y, Shao Z, Yan H, Li C, Peng N, Zhang Z, Zhang Y, Lin W, Fan Y, Qin Z, Hu Y, Zhu B, Wang S, Ding X, Zhao GP (2010) Complete genome sequence of the Rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Cell Res 20:1096–1108. doi:10.1038/cr.2010.87

    Article  CAS  PubMed  Google Scholar 

  14. Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26:1362–1384. doi:10.1039/B817069J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lechevalier MP, Prauser H, Labeda DP, Ruan JS (1986) Two genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 36:29–37. doi:10.1099/00207713-36-1-29

    Article  Google Scholar 

  16. Doroghazi JR, Metcalf WM (2013) Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genom 14:611. doi:10.1186/1471-2164-14-611

    Article  CAS  Google Scholar 

  17. Chen S, Wu Q, Shen Q, Wang H (2016) Progress in understanding the genetic information and biosynthetic pathways behind Amycolatopsis antibiotics, with implications for the continued discovery of novel drugs. Chem Biol Chem 17:119–128. doi:10.1002/cbic.201500542

    Article  CAS  Google Scholar 

  18. Xu L, Li Y, Zhu L, Zhao W, Chen D, Huang W, Yang S (2014) Characterization of plasmid pXL100 from Amycolatopsis orientalis HCCB10007 and construction of a shuttle vector. J Basic Microbiol 55:247–254. doi:10.1002/jobm.201400210

    Article  PubMed  Google Scholar 

  19. Stegmann E, Albersmeier A, Spohn M, Gert H, Weber T, Wohlleben W, Kalinowski J, Rückert C (2014) Complete genome sequence of the actinobacterium Amycolatopsis japonica MG417-CF17T (=DSM 44213T) producing (S, S)-N, N′-ethylenediaminedisuccinic acid. J Biotechnol 189:46–47. doi:10.1016/j.jbiotec.2014.08.034

    Article  CAS  PubMed  Google Scholar 

  20. Singh P, Kumari R, Mukherjee U, Saxena A, Sood U, Lal R (2014) Draft genome sequence of Rifamycin derivatives producing Amycolatopsis mediterranei strain DSM 46096/S955. Genome Announc 2:e00837-14. doi:10.1128/genomeA.00837-14

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mukherjee U, Saxena A, Kumari R, Singh P, Lal R (2014) Draft genome sequence of Amycolatopsis mediterranei DSM 40773, a tangible antibiotic producer. Genome Announc 2:e00752-14. doi:10.1128/genomeA.00752-14

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saxena A, Kumari R, Mukherjee U, Singh P, Lal R (2014) Draft genome sequence of the rifamycin producer Amycolatopsis rifamycinica DSM 46095. Genome Announc 2:e00662-14. doi:10.1128/genomeA.00662-14

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kaur N, Kumar S, Mayilraj S (2014) Genome sequencing and annotation of Amycolatopsis vancoresmycina strain DSM 44592T. Genom Data 2:16–17. doi:10.1016/j.gdata.2013.10.006

    Article  PubMed  Google Scholar 

  24. Khatri I, Subramanian S, Mayilraj S (2014) Genome sequencing and annotation of Amycolatopsis azurea DSM 43854T. Genom Data 2:44–45. doi:10.1016/j.gdata.2013.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kaur N, Kumar S, Bala M, Raghava GPS, Mayilraj S (2013) Draft genome sequence of Amycolatopsis decaplanina strain DSM 44594T. Genome Announc 1:e00138-13. doi:10.1128/genomeA.00138-13

    PubMed Central  Google Scholar 

  26. Kwun MJ, Hong H-J (2014) Draft genome sequence of Amycolatopsis lurida NRRL 2430, producer of the glycopeptide family antibiotic ristocetin. Genome Announc 2:e01050-14. doi:10.1128/genomeA.01050-14

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jeong H, Sim YM, Kim HJ, Lee DW, Lim SK, Lee SJ (2013) Genome sequence of the vancomycin-producing Amycolatopsis orientalis subsp. orientalis strain KCTC 9412T. Genome Announc 1:e00408–e00413. doi:10.1128/genomeA.00408-13

    PubMed  PubMed Central  Google Scholar 

  28. Jeong H, Sim YM, Kim HJ, Lee YJ, Lee DW, Lim SK, Lee SJ (2013) Genome sequences of Amycolatopsis orientalis subsp. orientalis strains DSM 43388 and DSM 46075. Genome Announc 1:e00543-13. doi:10.1128/genomeA.00545-13

    Google Scholar 

  29. Davis JR, Goodwin LA, Woyke T, Teshima H, Bruce D, Detter C, Tapia R, Han S, Han J, Pitluck S, Nolan M, Mikhailova N, Land NL, Sello JK (2012) Genome sequence of Amycolatopsis sp. strain ATCC 39116, a plant biomass-degrading actinomycete. J Bacteriol 194:2396–2397. doi:10.1128/JB.00186-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kwun MJ, Cheng J, Yang SH, Lee D-R, Suh J-W, Hong H-J (2014) Draft genome sequence of ristocetin-producing strain Amycolatopsis sp. strain MJM2582 isolated in South Korea. Genome Announc 2:e01091-14. doi:10.1128/genomeA.01091-14

    Article  PubMed  PubMed Central  Google Scholar 

  31. August PR, Tang L, Yoon YJ, Ning S, Müller R, Yu TW, Taylor M, Hoffmann D, Kim CG, Zhang X, Hutchinson CR, Floss HG (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5:69–79. doi:10.1016/S1074-5521(98)90141-7

    Article  CAS  PubMed  Google Scholar 

  32. Shao ZH, Ren SX, Liu XQ, Xu J, Zhao GP, Wang J (2015) A preliminary study of the mechanism of nitrate-stimulated remarkable increase of rifamycin production in Amycolatopsis mediterranei U32 by RNA-seq. Microb Cell Fact 14:75. doi:10.1186/s12934-015-0264-y

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shao Z, Gao J, Ding X, Wang J, Chiao J, Zhao G (2011) Identification and functional analysis of a nitrate assimilation operon nasACKBDEF from Amycolatopsis mediterranei U32. Arch Microbiol 193:463–477. doi:10.1007/s00203-011-0690-0

    Article  CAS  PubMed  Google Scholar 

  34. Admiraal SJ, Walsh CT, Khosla C (2001) The loading module of rifamycin synthetase is an adenylation–thiolation didomain with substrate tolerance for substituted benzoates. Biochemistry 40:6116–6123. doi:10.1021/bi010080z

    Article  CAS  PubMed  Google Scholar 

  35. Xu J, Wan E, Kim CJ, Floss HG, Mahmud T (2005) Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699. Microbiology 151:2515–2528. doi:10.1099/mic.0.28138-0

    Article  CAS  PubMed  Google Scholar 

  36. Admiraal SJ, Khosla C, Walsh CT (2003) A Switch for the transfer of substrate between nonribosomal peptide and polyketide modules of the rifamycin synthetase assembly line. J Am Chem Soc 125:13664–13665. doi:10.1021/ja0379060

    Article  CAS  PubMed  Google Scholar 

  37. Floss HG, Yu TW (2005) Rifamycin-mode of action, resistance, and biosynthesis. Chem Rev 105:621–632. doi:10.1021/cr030112j

    Article  CAS  PubMed  Google Scholar 

  38. Lal R, Khanna M, Kaur H, Srivastava N, Tripathi KK, Lal S (1995) Rifamycins: strain improvement program. Crit Rev Microbiol 21:19–30. doi:10.3109/10408419509113532

    Article  PubMed  Google Scholar 

  39. Udwadia ZF (2012) MDR, XDR, TDR tuberculosis: ominous progression. Thorax 67:286–288. doi:10.1136/thoraxjnl-2012-201663

    Article  PubMed  Google Scholar 

  40. Xu J, Mahmud T, Floss HG (2003) Isolation and characterization of 27-O-demethylrifamycin SV methyltransferase provides new insights into the post-PKS modification steps during the biosynthesis of the antitubercular drug rifamycin B by Amycolatopsis mediterranei S699. Arch Biochem Biophys 411:277–288. doi:10.1016/S0003-9861(03)00004-3

    Article  CAS  PubMed  Google Scholar 

  41. Baranasic D, Gacesa R, Starcevic A, Zucko J, Blažič M, Horvat M, Gjuračić K, Fujs Š, Hranueli D, Kosec G, Cullum J (2013) Draft genome sequence of Streptomyces rapamycinicus strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announc 1:e00581-13. doi:10.1128/genomeA.00581-13

    Article  PubMed  PubMed Central  Google Scholar 

  42. Goodfellow M, Brown AB, Cai JP, Chun JS, Collins MD (1997) Amycolatopsis japonicum sp. nov, an actinomycete producing (S, S)-N, N′-ethylenediaminedisuccinic acid. Syst Appl Microbiol 20:78–84. doi:10.1016/S0723-2020(97)80051-3

    Article  CAS  Google Scholar 

  43. Schäberle TF, Vollmer W, Frasch HJ, Hüttel S, Kulik A, Röttgen M, von Thaler AK, Wohlleben W, Stegmann E (2011) Self-resistance and cell wall composition in the glycopeptide producer Amycolatopsis balhimycina. Antimicrob Agents Chemother 55:4283–4289. doi:10.1128/AAC.01372-10

    Article  PubMed  PubMed Central  Google Scholar 

  44. Everest GJ, Meyers PR (2011) Evaluation of the antibiotic biosynthetic potential of the genus Amycolatopsis and description of Amycolatopsis circi sp. nov., Amycolatopsis equina sp. nov. and Amycolatopsis hippodromi sp. nov. J Appl Microbiol 111:300–311. doi:10.1111/j.1365-2672.2011.05058.x

    Article  CAS  PubMed  Google Scholar 

  45. Banskota AH, Mcalpine JB, Sørensen D, Ibrahim A, Aouidate M, Piraee M, Alarco AM, Farnet CM, Zazopoulos E (2006) Genomic analyses lead to novel secondary metabolites. Part 3. ECO-0501, a novel antibacterial of a new class. J Antibiot (Tokyo) 59:533–542. doi:10.1038/ja.2006.74

    Article  CAS  Google Scholar 

  46. Spohn M, Kirchner N, Kulik A, Jochim A, Wolf F, Muenzer P, Borst O, Gross H, Wohlleben W, Stegmann E (2014) Overproduction of ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17. Antimicrob Agents Chemother 58:6185–6196. doi:10.1128/AAC.03512-14

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dijkhuizen L (1996) Metabolic regulation in the actinomycete Amycolatopsis methanolica, a facultative methylotroph employing the rump cycle for formaldehyde assimilation. In: Microbial growth on C1 compounds. Springer, pp 9–15. doi: 10.1007/978-94-009-0213-8_3

  48. Seyedsayamdost MR, Traxler MF, Zheng SL, Kolter R, Clardy J (2011) Structure and biosynthesis of amychelin, an unusual mixed-ligand siderophore from Amycolatopsis sp. AA4. J Am Chem Soc 133:11434–11437. doi:10.1021/ja203577e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xie F, Dai S, Shen J, Ren B, Huang P, Wang Q, Liu X, Zhang B, Dai H, Zhang L (2015) A new salicylate synthase AmS is identified for siderophores biosynthesis in Amycolatopsis methanolica 239T. Appl Microbiol Biotechnol 99:1–11. doi:10.1007/s00253-014-6370-7

    Article  Google Scholar 

  50. Harrison AJ, Yu M, Gårdenborg T, Middleditch M, Ramsay RJ, Baker EN, Lott JS (2006) The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. J Bacteriol 188:6081–6091. doi:10.1128/JB.00338-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kerbarh O, Ciulli A, Howard NI, Abell C (2005) Salicylate biosynthesis: overexpression, purification, and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica. J Bacteriol 187:5061–5066. doi:10.1128/JB.187.15.5061-5066.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Berdnikova TF, Shashkov AS, Katrukha GS, Lapchinskaya OA, Yurkevich NV, Grachev AA, Nifant’ev NE (2009) The structure of antibiotic eremomycin B. Russ J Bioorg Chem 35:497–503. doi:10.1134/S1068162009040128

    Article  CAS  Google Scholar 

  53. Tsuji K, Kobayashi M, Kamigauchi T, Yoshimura Y, Terui Y (1988) New glycopeptide antibiotics. I. The structures of orienticins. J Antibiot (Tokyo) 41:819–822. doi:10.7164/antibiotics.41.819

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by grants from the Department of Biotechnology (DBT), Government of India, National Bureau of Agriculturally Important Microorganisms (NBAIM) AMASS/2006-07/NBAIM/CIR and All India Network Project Soil Biodiversity-Biofertilizer (ICAR). R.K. and P.S. gratefully acknowledge UGC, for providing research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rup Lal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, R., Singh, P. & Lal, R. Genetics and Genomics of the Genus Amycolatopsis . Indian J Microbiol 56, 233–246 (2016). https://doi.org/10.1007/s12088-016-0590-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0590-8

Keywords

Navigation