Skip to main content
Log in

Isolation of Indole Utilizing Bacteria Arthrobacter sp. and Alcaligenes sp. From Livestock Waste

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Indole is an interspecies and interkingdom signaling molecule widespread in different environmental compartment. Although multifaceted roles of indole in different biological systems have been established, little information is available on the microbial utilization of indole in the context of combating odor emissions from different types of waste. The present study was aimed at identifying novel bacteria capable of utilizing indole as the sole carbon and energy source. From the selective enrichment of swine waste and cattle feces, we identified Gram-positive and Gram-negative bacteria belonging to the genera Arthrobacter and Alcaligenes. Bacteria belonging to the genus Alcaligenes showed higher rates of indole utilization than Arthrobacter. Indole at 1.0 mM for growth was completely utilized by Alcaligenes sp. in 16 h. Both strains produced two intermediates, anthranilic acid and isatin, during aerobic indole metabolism. These isolates were also able to grow on several indole derivatives. Interestingly, an adaptive response in terms of a decrease in cell size was observed in both strains in the presence of indole. The present study will help to explain the degradation of indole by different bacteria and also the pathways through which it is catabolized. Furthermore, these novel bacterial isolates could be potentially useful for the in situ attenuation of odorant indole and its derivatives emitted from different types of livestock waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee J-H, Lee J (2010) Indole as an intercellular signal in microbial community. FEMS Microbiol Rev 34:426–444. doi:10.1111/j.1574-6976.2009.00204.x

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Xie XG, Ren CG, Dai CC (2013) Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari. Bioresour Technol 129:568–574. doi:10.1016/j.biortech.2012.11.100

    Article  CAS  PubMed  Google Scholar 

  3. Lee J, Zhang XS, Hegde M, Bentley WE, Jayaraman A, Wood TK (2008) Indole cell signaling occurs primarily at low temperatures in Escherichia coli. ISME J 2:1007–1023. doi:10.1038/ismej.2008.54

    Article  CAS  PubMed  Google Scholar 

  4. Chant EL, Summers DK (2007) Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. Mol Microbiol 63:35–43. doi:10.1111/j.1365-2958.2006.05481.x

    Article  CAS  PubMed  Google Scholar 

  5. Lee J, Jayaraman A, Wood TK (2007) Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 7:42. doi:10.1186/1471-2180-7-42

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee HH, Molla MN, Cantor CR, Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467:82–85. doi:10.1038/nature09354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee J, Attila C, Cirillo SLG, Cirillo JD, Wood TK (2009) Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb Biotechnol 2:75–90. doi:10.1111/j.1751-7915.2008.00061.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nikaido E, Yamaguchi A, Nishino K (2008) AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 283:24245–24253. doi:10.1074/jbc.M804544200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dwidar M, Nam D, Mitchell RJ (2014) Indole negatively impacts predation by Bdellovibrio bacteriovorus and its release from the bdelloplast. Environ Microbiol 17:1009–1022. doi:10.1111/1462-2920.12463

    Article  PubMed  Google Scholar 

  10. Lee J-H, Kim Y-G, Baek KH, Cho MH, Lee J (2014) The multifaceted roles of the interspecies signalling molecule indole in Agrobacterium tumefaciens. Environ Microbiol 17:1234–1244. doi:10.1111/1462-2920.12560

    Article  PubMed  Google Scholar 

  11. Molina-Santiago C, Daddaoua A, Fillet S, Duque E, Ramos JL (2014) Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance. Environ Microbiol 16:1267–1281. doi:10.1111/1462-2920.12368

    Article  CAS  PubMed  Google Scholar 

  12. Lee J-H, Wood TK, Lee J (2015) Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol 23:707–718. doi:10.1016/j.tim.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  13. Arora PK, Sharma A, Bae H (2015) Microbial degradation of indole and its derivatives. J Chem 2015:13. doi:10.1155/2015/129159

    Google Scholar 

  14. Fazlurrahman Batra M, Pandey J, Suri CR, Jain RK (2009) Isolation and characterization of an atrazine-degrading Rhodococcus sp. strain MB-P1 from contaminated soil. Lett Appl Microbiol 49:721–729. doi:10.1111/j.1472-765X.2009.02724.x

    Article  CAS  PubMed  Google Scholar 

  15. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261. doi:10.1099/ijs.0.64915-0

    Article  CAS  PubMed  Google Scholar 

  16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim Y-G, Lee J-H, Cho MH, Lee J (2011) Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei. BMC Microbiol 11:119. doi:10.1186/1471-2180-11-119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee J-H, Cho MH, Lee J (2011) 3-Indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environ Microbiol 13:62–73. doi:10.1111/j.1462-2920.2010.02308.x

    Article  CAS  PubMed  Google Scholar 

  19. Claus G, Kutzner HJ (1983) Degradation of indole by Alcaligenes spec. Syst Appl Microbiol 4:169–180. doi:10.1016/S0723-2020(83)80046-0

    Article  CAS  PubMed  Google Scholar 

  20. Trabue S, Kerr B, Bearson B, Ziemer C (2011) Swine odor analyzed by odor panels and chemical techniques. J Environ Qual 40:1510–1520. doi:10.2134/jeq2010.0522

    Article  CAS  PubMed  Google Scholar 

  21. Doukyu N, Aono R (1997) Biodegradation of indole at high concentration by persolvent fermentation with Pseudomonas sp. ST-200. Extremophiles 1:100–105. doi:10.1007/s007920050021

    Article  CAS  PubMed  Google Scholar 

  22. Yin B, Gu JD, Wan N (2005) Degradation of indole by enrichment culture and Pseudomonas aeruginosa Gs isolated from mangrove sediment. Int Biodeterior Biodegradation 56:243–248. doi:10.1016/j.ibiod.2005.10.001

    Article  CAS  Google Scholar 

  23. Garbe TR, Kobayashi M, Yukawa H (2000) Indole-inducible proteins in bacteria suggest membrane and oxidant toxicity. Arch Microbiol 173:78–82. doi:10.1007/s002030050012

    Article  CAS  PubMed  Google Scholar 

  24. Kim J, Hong H, Heo A, Park W (2013) Indole toxicity involves the inhibition of adenosine triphosphate production and protein folding in Pseudomonas putida. FEMS Microbiol Lett 343:89–99. doi:10.1111/1574-6968.12135

    Article  CAS  PubMed  Google Scholar 

  25. Qu Y, Shen E, Ma Q, Zhang Z, Liu Z, Shen W, Wang J, Li D, Li H, Zhou J (2015) Biodegradation of indole by a newly isolated Cupriavidus sp. SHE. J Environ Sci (China) 34:126–132. doi:10.1016/j.jes.2015.01.023

    Article  Google Scholar 

  26. Kim D, Rahman A, Sitepu IR, Hashidoko Y (2013) Accelerated degradation of exogenous indole by Burkholderia unamae strain CK43B exposed to pyrogallol-type polyphenols. Biosci Biotechnol Biochem 77:1722–1727. doi:10.1271/bbb.130282

    Article  CAS  PubMed  Google Scholar 

  27. Bak F, Widdel F (1986) Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov. Arch Microbiol 146:170–176. doi:10.1007/BF00402346

    Article  CAS  Google Scholar 

  28. McClay K, Boss C, Keresztes I, Steffan RJ (2005) Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Appl Environ Microbiol 71:5476–5483. doi:10.1128/AEM.71.9.5476-5483.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rui L, Reardon KF, Wood TK (2005) Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl Microbiol Biotechnol 66:422–429. doi:10.1007/s00253-004-1698-z

    Article  CAS  PubMed  Google Scholar 

  30. Doukyu N, Toyoda K, Aono R (2003) Indigo production by Escherichia coli carrying the phenol hydroxylase gene from Acinetobacter sp. strain ST-550 in a water–organic solvent two-phase system. Appl Microbiol Biotechnol 60:720–725. doi:10.1007/s00253-002-1187-1

    Article  CAS  PubMed  Google Scholar 

  31. Qu Y, Shi S, Zhou H, Ma Q, Li X, Zhang X, Zhou J (2012) Characterization of a novel phenol hydroxylase in indoles biotranformation from a strain Arthrobacter sp. W1. PLoS One 7:e44313. doi:10.1371/journal.pone.0044313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A6A1031189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintae Lee.

Additional information

Minsu Kim and Jin-Hyung Lee have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Lee, JH., Kim, E. et al. Isolation of Indole Utilizing Bacteria Arthrobacter sp. and Alcaligenes sp. From Livestock Waste. Indian J Microbiol 56, 158–166 (2016). https://doi.org/10.1007/s12088-016-0570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0570-z

Keywords

Navigation