Skip to main content
Log in

Synthetic Biology in Action: Developing a Drug Against MDR-TB

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The amalgamation of the research efforts of biologists, chemists and geneticists led by scientists at the Department of Zoology, University of Delhi has resulted in the development of a novel rifamycin derivative; 24-desmethylrifampicin, which is highly effective against multi-drug resistant (MDR) strains of Mycobacterium tuberculosis. The production of rifamycin analogue was facilitated by genetic-synthetic strategies that have opened an interdisciplinary route for the development of more such rifamycin analogues aiming at a better therapeutic potential. The results of this painstaking effort of nearly 25 years of a team of students and scientists led by Professor Rup Lal have been recently published in the Journal of Biological Chemistry (www.jbc.org/content/289/30/21142.long). This strategy can now find applications for developing newer rifamycin analogues that can be harnessed to overcome the problem of MDR, extensively drug resistant (XDR) and totally drug resistant (TDR) M. tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kalia VC, Rani A, Lal S, Cheema S, Raut CP (2007) Combing databases reveals potential antibiotic producers. Expert Opin on Drug Discov 2:211–224. doi:10.1517/17460441.2.2.211

    Article  CAS  Google Scholar 

  2. Purohit HJ, Cheema S, Lal S, Raut CP, Kalia VC (2007) In search of drug targets for Mycobacterium tuberculosis. Infect Disord Drug Targets 7:245–250. doi:10.2174/187152607782110068

    Article  PubMed  CAS  Google Scholar 

  3. Global tuberculosis report 2013-www.who.in/tb/publications/global_report/en/

  4. Maggi N, Pasqalucci CR, Ballotta R, Sensi P (1966) Rifampicin: a new orally active rifamycin. Chemotherapea 11:285–292. doi:10.1159/000220462

    Article  CAS  Google Scholar 

  5. Wehrli W, Knusel F, Schmid K, Staehelin, M (1968) Interaction of rifamycin with bacterial RNA polymerase. Proc Natl Acad Sci USA 61: 667–673. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC225211/?page=1)

  6. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912. doi:10.1016/S0092-8674(01)00286-0

    Article  PubMed  CAS  Google Scholar 

  7. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Critical Rev Microbiol 37:121–140. doi:10.3109/1040841X.2010.532479

    Article  CAS  Google Scholar 

  8. Kalia VC (2013) Quorum sensing inhibitors: an over view. Biotechnol Adv 31:224–245. doi:10.1016/j.biotechadv.2012.10.004

    Article  PubMed  CAS  Google Scholar 

  9. Kalia VC (2014) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol. 54:1–2. doi:10.1007/s12088-013-0443-7

    Article  PubMed  CAS  Google Scholar 

  10. Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum sensing inhibitors. Microb Ecol 68:13–23. doi:10.1007/s00248-013-0316-y

    Article  PubMed  CAS  Google Scholar 

  11. Diacon AH, Dawson R, Bidlingmaier-Groote FV, Symons G, Venter A, Donald PR, Niekerk CV, Everitt D, Winter H, Becker P, Mendel CM, Spigelman MK (2012) 14-Day bactericidal activity of PA-824, bedaquiline, pyrazinamide and moxifloxacin combinations: a randomized trial. Lancet 380:986–993. doi:10.1016/S0140-6736(12)61080-0

    Article  PubMed  CAS  Google Scholar 

  12. August PR, Tang L, Yoon YJ, Ning S, Müller R, Yu TW, Taylor M, Hoffmann D, Kim CG, Zhang X, Hutchinson CR, Floss HG (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Bio 5:69–79. doi:10.1016/S1074-5521(98)90141-7

    Article  CAS  Google Scholar 

  13. Lal R, Khanna R, Dhingra N, Khanna M, Lal S (1998) Development of an improved cloning vector and transformation system in Amycolatopsis mediterranei (Nocardia mediterranei). J Antibiot (Tokyo) 51:161–169. doi:10.7164/antibiotics

    Article  CAS  Google Scholar 

  14. Lal R (1999) Cloning vector and the process for the preparation thereof. US Patent US00598560A

  15. Khanna M, Dua M, Lal R (1998) Selection of suitable marker genes for the development of cloning vectors and electroporation in different strains of Amycolatopsis mediterranei. Microbiol Res 153:205–211. doi:10.1016/S0944-5013(98)80002-5

    Article  PubMed  CAS  Google Scholar 

  16. Lal R, Kumari R, Kaur H, Khanna R, Dhingra N, Tuteja D (2000) Regulation and manipulation of the gene clusters encoding type-I PKSs. Trends Biotechnol 18:264–274. doi:10.1016/S0167-7799(00)01443-8

    Article  PubMed  CAS  Google Scholar 

  17. Tuteja D, Dua M, Khanna R, Dhingra N, Khanna M, Kaur H, Saxena D, Lal R (2000) The importance of homologous recombination in the generation of large deletions in hybrid plasmids in Amycolatopsis mediterranei. Plasmid 43:1–11. doi:10.1006/plas.1999.1426

    Article  PubMed  CAS  Google Scholar 

  18. Dhingra G, Kumari R, Bala S, Majumdar S, Malhotra S, Sharma P, Lal S, Cullum J, Lal R (2003) Development of cloning vectors and transformation methods for Amycolatopsis. J Ind Microbiol Biotechnol 30:195–204. doi:10.1007/s10295-003-0040-6

    PubMed  CAS  Google Scholar 

  19. Nigam A, Almabruk KH, Saxena A, Jongtae Y, Mukherjee U, Kaur H, Kohli P, Kumari R, Singh P, Zakharov LN, Singh Y, Mahmud T, Lal R (2014) Modification of rifamycin polyketide backbone leads to improved drug activity against rifampicin resistant Mycobacterium tuberculosis. J Biol Chem 289:21142–21152. doi:10.1074/jbc.M114.572636

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology (DBT). AS, UM, RK & PS thank the University Grant Commission for providing fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rup Lal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, A., Mukherjee, U., Kumari, R. et al. Synthetic Biology in Action: Developing a Drug Against MDR-TB. Indian J Microbiol 54, 369–375 (2014). https://doi.org/10.1007/s12088-014-0498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-014-0498-0

Keywords

Navigation