Skip to main content
Log in

Pseudomonas sp. to Sphingobium indicum: a journey of microbial degradation and bioremediation of Hexachlorocyclohexane

  • Review
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The unusual process of production of hexachlorocyclohexane (HCH) and extensive use of technical HCH and lindane has created a very serious problem of HCH contamination. While the use of technical HCH and lindane has been banned all over the world, India still continues producing lindane. Bacteria, especially Sphingomonads have been isolated that can degrade HCH isomers. Among all the bacterial strains isolated so far, Sphingobium indicum B90A that was isolated from HCH treated rhizosphere soil appears to have a better potential for HCH degradation. This conclusion is based on studies on the organization of lin genes and degradation ability of B90A. This strain perhaps can be used for HCH decontamination through bioaugmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mathur HB, Jhonson S, Singh B, Mishra R and Kumar A (2003) Bottled water has pesticide residue. Down Earth 11:27–33 http:// www.cseindia.org/html/lab/bottled water result.htm

    Google Scholar 

  2. Bakore N, John PJ and Bhatnagar P (2004) Organochlorine pesticide residues in wheat and drinking water samples from Jaipur, Rajasthan, India. Environ. Monit. Assess 98:381–389

    Article  PubMed  CAS  Google Scholar 

  3. Pandit GG and Sahu SK (2002) Assessment of risk to public health posed by persistent organochlorinde pesticide residue in milk and milk products in Mumbai, India. J Environ Monit 4:182–185

    Article  PubMed  CAS  Google Scholar 

  4. Kumari B, Singh J, Singh S and Kathpal T S (2005) Monitoring of butter and ghee (clarified butter fat) for pesticidal contamination from cotton belt of Haryana, India. Environ Monit Asses 105:111–120

    Article  CAS  Google Scholar 

  5. Kumari B, Madan VK and Kathpal TS (2006) Monitoring of pesticides residues in fruits. Environ Monit Asses 123:407–412

    Article  CAS  Google Scholar 

  6. Prakash O, Suar M, Raina V, Dogra C, Pal R, and Lal R (2004) Residues of hexachlorocyclohexane isomers in soil and water samples from Delhi and adjoining area. Current Science 87:73–77

    CAS  Google Scholar 

  7. Sahu SK, Patnaik KK, Sharmila M and Sethunnathan N (1990) Degradation of alpha-, beta-, and gamma-Hexachlorocyclohexane by a soil bacterium under aerobic conditions. Appl Environ Microbiol 56:3620–3622

    PubMed  CAS  Google Scholar 

  8. Dogra C, Raina V, Pal R, Suar M, Lal S, Gartemann KH, Holliger C, Van der Meer J R and Lal R (2004) Organization of lin genes and IS6100 among different strains of hexachlorcyclohexane degrading Sphingomonas paucimobilis strains: Evidence of natural horizontal transfer. J Bacteriol 186:2225–2235

    Article  PubMed  CAS  Google Scholar 

  9. Raina V, Hauser A, Buser HR, Rentsch D, Sharma P, Lal R, Holliger C, Poiger T, Muller M D and Kohler HP (2007). Hydroxylated metabolites of β-and δ-hexachlorocyclohexane: bacterial formation, stereochemical configuration and occurrance in groundwater at a former production site. Environ Sci Technol 41:4292–4298

    Article  PubMed  CAS  Google Scholar 

  10. Raina V, Suar M, Singh A, Prakash O, Dadhwal M, Gupta SK, Dogra C, Lawlor K, Lal S, van der Meer JR, Holliger C and Lal R (2008) Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soil via inoculation with Sphingobium indicum B90A. Biodegradation 19(1):27–40

    Article  PubMed  CAS  Google Scholar 

  11. Willett KL, Ulrich EM and Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207

    Article  CAS  Google Scholar 

  12. Kutz FW, Wood PH and Bottimore DP (1991) Organochlorine pesticides and polychlorinated biphenyls in human adipose tissue. Rev Environ Contam Toxicol 120:1–82

    PubMed  CAS  Google Scholar 

  13. Dupire A and Raucourt M (1945) A new insecticide: the hexachloride of benzene. C. R. Seances Acad Agric Fr 29:470–472

    Google Scholar 

  14. Slade RE (1945) The γ-isomer of hexachlorocyclohexane (gammexane): An insecticide with outstanding properties. Chem Ind (London) 40:314–319

    Google Scholar 

  15. Phillips TM, Seech AG, Lee H and Trevors JT (2005). Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392

    Article  PubMed  CAS  Google Scholar 

  16. Walker K, Vallero DA and Lewis RG (1999) Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment. Environ Sci Technol 33:4373–4378

    Article  CAS  Google Scholar 

  17. Wania F, Mackay D, Li Y F, Bidleman TF and Strand A (1999) Global chemical fate of α-hexachlorocyclohexane. Evaluation of a global distribution model. Environ Toxicol Chem 18:1390–1399

    Article  CAS  Google Scholar 

  18. Iwata H, Tenabe S, Salai N, Nishimura A and Tatsukawa R (1994) Geographical distribution of persistent organochlorines in air, water and sediments from Asia and Oceania and their implications for global redistribution from lower latitudes. Environ Pollut 85:15–33

    Article  PubMed  CAS  Google Scholar 

  19. Klánová J, Matykiewiczowá N, Máčka Z, Prošek P, Láska K and Klán P (2008) Persistant Organic Pollutants in soils and sediments from James Ross Island. Antarctia. Environmental Pollution. 152(2):416–423

    Article  CAS  Google Scholar 

  20. US EPA (1980) Lindane position document 2/3. Report of the US Environmental Protection Agency, 540/9-87-153, Washington, DC

  21. Vijgen J (2006) The legacy of lindane HCH isomer production. A global overview of residue management, formulation and disposal. International HCH and Pesticide Association

  22. Li Y F (1999) Global technical hexachlorocyclohexane (HCH) usage and its contamination consequences in the environment: from 1948 to 1997. Sci Total Environ 232:121–158

    Article  CAS  Google Scholar 

  23. Oliveira RM, Bastos LH, Dias AE, Silva SA and Moreira JC (2003) Residual concentration of hexachlorocyclohexane in a contaminated site in Cidade dos Meninos, Duque de Caxias, Rio de Janeiro, Brazil, after calcium oxide treatment. Cad Saude Publica 19:447–453

    PubMed  Google Scholar 

  24. Concha-Grana E, Turnes-Carou MI, Muniategui-Lornzo S, Lopez-Mahia P, Prada-Rodriguez D and Fernandez-Fernandez E (2006) Evaluation of HCH isomers and metabolites in soils, lechates, river water and sediments of a highly contaminated area. Chemosphere 64:588–595

    Article  PubMed  CAS  Google Scholar 

  25. Vega FA, Covelo EF and Andrade ML (2007) Accidental organochlorine pesticide contamination of soil in Porrino, Spain. J Environ Qual 36:272–279

    Article  PubMed  CAS  Google Scholar 

  26. Mohn WW, Mertens B, Neufeld JD, Verstraete W, and de Lorenzo V (2006) Distribution and phylogeny of hexachlorocyclohexane-degrading bacteria in soils from Spain. Environ Microbiol 8:60–68

    Article  PubMed  CAS  Google Scholar 

  27. Boltner D, Moreno-Morillas S and Ramos JL (2005) 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 7:1329–1338

    Article  PubMed  CAS  Google Scholar 

  28. Kalbitz K and Popp P (1999) Seasonal impacts on γ-hexachlorocyclohexane concentration in soil solution. Environ Pollution 106:139–141

    Article  CAS  Google Scholar 

  29. Dadhwal M, Singh A, Prakash O, Gupta SK, Kumari K, Sharma P, Jit S, Verma M, Holliger C and Lal R (2008) Proposal of biostimulation for HCH decontamination and characterization of culturable bacterial community from high dose point HCH contaminated soils. J Appl Microbiol (Being revised)

  30. Metcalf RL (1955) Organic insecticides, their chemistry and mode of action. New York: Interscience Publishers. 392 p

    Google Scholar 

  31. Smith AG (1991) Chlorinated hydrocarbon insecticides. Classes of pesticides. In: W. J. Hayes, E. R. Laws (Eds). Handbook of pesticide toxicology. (pp. 731–915). Academic Press: San Diego, CA

    Google Scholar 

  32. Gupta, P.K., 1986. Pesticides in the India environment. Inter-print, New Delhi, pp 1–206

  33. Agnihotri NP, Kulshreshtha G, Gajbhiye VT, Mohapatra SP and Singh SB (1996) Organochlorine insecticide residues in agricultural soils of the Indo-Gangetic plains. Environ Monit Assess 40:279–288

    Article  CAS  Google Scholar 

  34. Bhattacharya B, Sarkar SK and Mukherjee N (2003) Organochlorine pesticide residues in sediments of a tropical mangrove estuary, India: implications for monitoring. Environ Int 29:587–592

    CAS  Google Scholar 

  35. Singh KP, Malik A and Sinha S (2007a) Persistent organochlorine pesticide residues in soil and surface water of northern Indo Gangetic alluvial plains. Environ Monit Assess 125:147–155

    Article  PubMed  CAS  Google Scholar 

  36. Senoo K and Wada H (1989) Isolation and identification of an aerobic γ-HCH-decomposing bacterium from soil. Soil Sci Plant Nutr 35:79–87

    CAS  Google Scholar 

  37. Imai R, Nagata Y, Senoo K, Wada H, Fukuda M, Takagi M and Yano K (1989) Dehydrochlorination of γ-hexachlorocyclohexane (γ-BHC) by γ-BHC assimilating Pseudomonas paucimobilis. Agric Biol Chem 53:2015–2017

    CAS  Google Scholar 

  38. Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G, Prakash O, Prabagaran SR, Shivaji S, Cullum J, Holliger C and Lal R (2005) The hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+ having similar lin genes are three distinct species, Sphingomonas indicum sp. nov; S. japonicum sp. nov; and S. francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55:1965–1972

    Article  PubMed  CAS  Google Scholar 

  39. Thomas JC, Berger F, Jacuier M, Bernillon D, Baud-Grasset F, Truffaut N, Normand P, Vogel TM and Simonet P (1996) Isolation and characterization of a novel γ-hexachlorocclohexane degrading bacterium. J Bacteriol 178:6049–6055

    PubMed  CAS  Google Scholar 

  40. Nalin R, Simonet P, Vogel TM and Normand P (1999) Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49:19–23

    Article  PubMed  Google Scholar 

  41. Cérémonie H, Boubakri H, Mavingui P, Simonet P and Vogel TM (2006) Plasmid-encoded γ-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas paucimobilis Sp+). FEMS Microbiol Lett 257:243–252

    Article  PubMed  CAS  Google Scholar 

  42. Gupta A, Kaushik CP and Kaushik A (2000) Degradation of hexachlorocyclohexane isomers by two strains of Alcaligenes faecalis isolated from a contaminated site. Bull Environ Contam Toxicol 66:794–800

    Google Scholar 

  43. Nagata Y, Miyauchi K and Takagi M (1999) Complete analysis of genes and enzymes for gamma-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotech 23:380–390

    Article  CAS  Google Scholar 

  44. Nagata Y, Endo R, Ito M, Ohtsubo Y and Tsuda M (2007) Aerobic degradation of lindane (γ-hexachlorocyclohexan) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76(4):741–752

    Article  PubMed  CAS  Google Scholar 

  45. Sahu SK, Patnaik KK, Bhuyan S, Sreedharan B, Kurihara N, Adhya TK and Sethunathan N (1995) Mineralization of α-, β-and γ-isomers of hexachlorocyclohexane by a soil bacterium under aerobic conditions. J Agr Food Chem 43:833–837

    Article  CAS  Google Scholar 

  46. Kumari R, Subudhi S, Suar M, Dhingra G, Raina V, Dogra C, Lal S, Van der Meer JR, Holliger C and Lal R (2002) Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68(12):6021–6028

    Article  PubMed  CAS  Google Scholar 

  47. Suar M, van der Meer J R, Lawlor K, Holliger C and Lal R (2004) Dynamics of Multiple lin Gene Expression in Sphingomonas paucimobilis B90A in Response to Different Hexachlorocyclohexane Isomers. Appl Environ Microbiol 70:6650–6656

    Article  PubMed  CAS  Google Scholar 

  48. Miyauchi K, Lee HS, Fukuda M, Takagi M and Nagata Y (2002) Cloning and characterization of linR, involved in regulation of the downstream pathway for □-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. Appl Environ Microbiol 68:1803–1807

    Article  PubMed  CAS  Google Scholar 

  49. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T and Yamam oto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiology and Immunology 34(2):99–119

    PubMed  CAS  Google Scholar 

  50. Takeuchi M, Hamana K and Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. International Journal of Systematic and Evolutionary Microbiology 51(4):1405–1417

    PubMed  CAS  Google Scholar 

  51. Maruyama T, Park H D, Ozawa K, Tanaka Y, Sumino T, Hamana K, Hiraishi A and Kato K (2006)

  52. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89

  53. Nawab A, Aleem A and Malik A (2003) Determination of organochlorine pesticides in agricultural soil with special reference to γ-HCH degradation by Pseudomonas strains. Biores Technol 88:41–46

    Article  CAS  Google Scholar 

  54. Kumar M, Chaudhary P, Dwivedi M, Kumar R, Paul D, Jain RK, Garg SK and Kumar A (2005) Enhanced Biodegradation of β-and δ-hexachlorocyclohexane in the presence of α-and γ-isomers in contaminated soil. Environ Sci Technol 39:4005–4011

    Article  PubMed  CAS  Google Scholar 

  55. Manickam N, Mau M and Schlomann M (2006) Characterization of the novel HCH degrading strain, Microbacterium sp. ITRC 1. Appl Microbiol Biotechnol 69:580–588

    Article  PubMed  CAS  Google Scholar 

  56. Manickam N, Misra R and Mayilraj S (2007) A novel pathway for the biodegradation of γ-hexachlorocyclohexane by a Xanthomonas sp. strain ICH12. J Appl Microbiol 102(6):1468–1478

    Article  PubMed  CAS  Google Scholar 

  57. Murthy HMR and Manonmani HK (2007) Aerobic degradation of technical hexachlorocyclohexane by a defined microbial consortium. J Hazard Mat 149(1):18–25

    Article  CAS  Google Scholar 

  58. Suar M, Hauser A, Poiger T, Buser HR, Muller MD, Dogra C, Raina V, Holliger C, Van der Meer JR, Lal R and Kohler HPE (2005) Enantioselective transformation of α-hexachlorocyclohexane by the dehydrochlorinases LinA1 and LinA2 from the soil bacterium Sphingobium paucimobilis B90A. Appl Environ Microbiol 71:8514–8518

    Article  PubMed  CAS  Google Scholar 

  59. Nagata Y, Kamakura M, Endo R, Miyazaki R, Ohtsubo Y and Tsuda M (2006) Distribution of γ-hexacholorocyclohexane-degrading genes on three replicons in Sphingobium japonicum UT26. FEMS Microbiology Letters 256(1):112–118

    Article  PubMed  CAS  Google Scholar 

  60. Malhotra S, Sharma P, Kumari H, Singh A and Lal R (2007) Localization of HCH catabolic genes (lin genes) in Sphingobium indicum B90A. Ind J Microbiol 47(3):271–275

    Article  CAS  Google Scholar 

  61. Nagata Y, Prokop Z, Sato Y, Jerabek P, Kumar A, Ohtsubo Y, Tsuda M and Damborsky J (2005a) Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Appl Environ Microbiol 71:2183–2185

    Article  PubMed  CAS  Google Scholar 

  62. Johri AK, Dua M, Tuteja D, Saxena R, Saxena DM and Lal R (1998) Degradation of alpha, beta, gamma and delta-hexachlorocyclohexanes by Sphingomonas paucimobilis. Biotechnol Lett 20:885–887

    Article  CAS  Google Scholar 

  63. Sharma, P, Raina V, Kumari R, Malhotra S, Dogra C, Kumari H, Kohler HP, Buser HR, Holliger C and Lal R (2006) The haloalkane dehalogenase LinB is responsible for β-and? δ-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl Environ Microbiol 72:5720–5727

    Article  PubMed  CAS  Google Scholar 

  64. Miyazaki R, Sato Y, Ito M, Ohtsubo Y, Nagata Y and Tsuda M (2006) Complete nucleotide sequence of an exogenously isolated plasmid, pLB1, involved in γ-hexachlorocyclohexane degradation. Appl Environ Microbiol 72(11):6923–6933

    Article  PubMed  CAS  Google Scholar 

  65. Wu J, Hong Q, Han P, He J and Li S (2007) A gene linB2 responsible for the conversion of β-HCH and 2, 3, 4, 5, 6-pentachlorocyclohexanol in Sphingomonas sp. BHC-A. Appl Microbiol Biotechnol 73:1097–1105

    Article  PubMed  CAS  Google Scholar 

  66. Kawahara K, Kuraishi H and Zahringer U (1999) Chemical structure and function of glycosphingolipids of Sphingomonas spp. and their distribution among members of the α-4 subclass of proteobacteria. J Ind Microbiol Biotechnol 23:408–413

    Article  PubMed  CAS  Google Scholar 

  67. Aso Y, Miyamoto Y, Harada KM, Momma K, Kawai S, Hashimato W, Mikami B and Murata K (2006) Engineered membrane superchannel improves bioremediation potential of dioxin-degrading bacteria. Nat Biotechnol 2:188–189

    Article  CAS  Google Scholar 

  68. Singh AK, Chaudhary P, Macwan AS, Diwedi VN and Kumar A (2007b) Selective loss of lin genes from hexachlorocyclohexane degrading Pseudomonas aeruginosa ITRC-5 under different growth conditions. Appl Microbiol Biotechnol 76:895–901

    Article  PubMed  CAS  Google Scholar 

  69. Beurskens JEM, Stams AJM, Zehnder AJB and Bachmann A (1991) Relative biochemical reactivity of three hexachlorocyclohexane isomers. Ecotoxicol Environ Safety 21:128–136

    Article  PubMed  CAS  Google Scholar 

  70. Lal R, Dogra C, Malhotra S, Sharma P and Pal R (2006) Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends in Biotechnol 24:121–130

    Article  CAS  Google Scholar 

  71. Lovely DR (2003) Cleaning up with genomics: Applying molecular biology to bioremediation. Nature Rev Microbiol 1:35–44

    Article  CAS  Google Scholar 

  72. Pepper IL, Gentry TJ, Newby DT, Roune TM and Josephgou KL (2002) The role of cell bioaugmentation and gene bioaugmentation in the remediation of cocontamination soils. Environ Health Perspect 110:943–946

    PubMed  CAS  Google Scholar 

  73. Vidali M (2002) Bioremediation: An overview. Pure Appl Chem 73:1163–1172

    Article  Google Scholar 

  74. Li YF, Cai DJ and Singh A (1998b) Hexachlorocyclohexane use trends in China and their impact on the environment. Arch Environ Contamin Toxicol 35:688–697

    Article  CAS  Google Scholar 

  75. Kannan K, Tanabe S and Tatsukawa R (1995) Geographical distribution and accumulation features of organochlorine insecticide residues in fish in tropical Asia and Oceania. Environ Sci Technol 29:2673–2683

    Article  CAS  Google Scholar 

  76. Loganathan BG, Tanabe S, Goto M and Tatsukawa R (1989) Temporal trends of organochlorine residues in lizard goby, Rhinogobius flumineus, from the river Nagaragawa, Japan. Environ Pollut 62:237–251

    Article  PubMed  CAS  Google Scholar 

  77. Tatsukawa R, Wakimoto T and Ogawa T (1972) BHC residues in the environment. In: F. Matsumara, C.M. Boush and T. Misato, Editors, Environmental toxicology of pesticides, Academic Press, New York, NY (1972), pp. 229–238

    Google Scholar 

  78. Rapaport RA and Eisenreich SJ (1988) Historical atmospheric inputs of high molecular weight chlorinated hydrocarbons to eastern North America. Environ Sci Technol 22:931–941

    Article  CAS  Google Scholar 

  79. Benezet HJ and Matsumura F (1973) Isomerization of γ-BHC to α-BHC in the environment. Nature 243:480–481

    Article  CAS  Google Scholar 

  80. Francis AJ, Spanggord RJ and Ouochi GI (1975) Degradation of lindane by Escherichia Coli. Appl Environ Microbiol 29:567–568

    CAS  Google Scholar 

  81. Tu CM (1976) Utilization and degradation of lindane by soil microorganisms. Arch Microbiol 108:259–263

    Article  PubMed  CAS  Google Scholar 

  82. Huntjens JLM, Brouwer W, Grobben K, Jansma O, Scheffer F and Zehnder AJB (1988) Biodegradation of alpha-hexachlorocyclohexane by a bacterium isolated from polluted soil. In contaminated soil’ 88K... (Wolf, W J van der Brink and F J Colon eds). Kluwer Academic Publishers, Dordrecht, the Netherland, pp 733–737

    Google Scholar 

  83. Nagata Y, Kamarkura M, Endo R, Miyazaki R, Ohtsubo Y and Tsuda M (2005b) Distribution of γ-hexachlorocyclohexane degrading genes on three replicosns in Sphingobium japonicum UT26. FEMS Microbiol Lett 256:112–118

    Article  CAS  Google Scholar 

  84. Okeke BC, Siddique T, Arbestain MC and Frankenberger WT (2002) Biodegradation of γ-hexachlorocyclohexane (Lindane) and α-hexachlorocyclohexane in water and soil slurry by a Pandoraea species. J Agr Food Chem 50:2548–2555

    Article  CAS  Google Scholar 

  85. Ito M, Prokop Z, Klvana M, Otsubo Y, Tsuda M, Damborsky J and Nagata Y (2007) Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from γ-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MII205. Arch Microbiol 188(4):313–325

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rup Lal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lal, R., Dadhwal, M., Kumari, K. et al. Pseudomonas sp. to Sphingobium indicum: a journey of microbial degradation and bioremediation of Hexachlorocyclohexane. Indian J Microbiol 48, 3–18 (2008). https://doi.org/10.1007/s12088-008-0002-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-008-0002-9

Keywords

Navigation