Skip to main content
Log in

Vertically structured prokaryotic community can control the efficiency of the biological pump in the oceans

  • Original paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Despite recent advances in molecular and metagenomic approaches, it is still unclear how spatiotemporal variations in microbial communities influence the biological pump, exporting organic carbon from the surface to the deep oceans. We address this important problem by constructing a simple model of a prokaryotic metacommunity in which two generalist ecotypes compete for two resources. The first and the second ecotypes have, respectively, a higher preference for particulate organic carbon (POC) and dissolved organic carbon. Sinking of POC would lead to a higher abundance of the first ecotype in the deep layer compared to the surface layer, but vertical mixing in turn generates a net upward flux of this ecotype to the surface layer. This upward movement accelerates the shifts in the community composition during the phytoplankton bloom, contributing to a higher efficiency in POC remineralization at the surface layer and reducing the carbon flux to the deep layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acinas SG, Rodriguez-Valera F, Pedrós-Alió C (1997) Spatial and temporal variation in marine bacterioplankton diversity as shown in RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiol Ecol 24:27–40 doi:10.1111/j.1574-6941.1997.tb00420.x

    Article  CAS  Google Scholar 

  • Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SK (2002) A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast mineral. Deep Sea Res Part II Top Stud Oceanogr 49:219–236 doi:10.1016/S0967-0645(01)00101-1

    Article  CAS  Google Scholar 

  • Auger P, Poggiale JC (1996) Emergence of population growth models: fast migration and slow growth. J Theor Biol 182:99–108 doi:10.1006/jtbi.1996.0145

    Article  CAS  PubMed  Google Scholar 

  • Auger P, de la Parra RB, Poggiale JC, Sánchez E, Sanz L (2008) Aggregation methods in dynamics systems and applications in population and community dynamics. Phys Life Rev 5:79–105 doi:10.1016/j.plrev.2008.02.001

    Article  Google Scholar 

  • Bopp L, Monfray P, Aumont O, Dufresne J-L, Treut HL, Madec G, Terray L, Orr JC (2001) Potential impact of climate change on marine export production. Global Biogeochem Cycles 15:81–99 doi:10.1029/1999GB001256

    Article  CAS  Google Scholar 

  • Boyd PW, Trull TW (2007) Understanding the export of biogenic particles in ocean waters: is there consensus? Prog Oceanogr 72:276–312 doi:10.1016/j.pocean.2006.10.007

    Article  Google Scholar 

  • Carlson CA, Ducklow HW, Michaels AF (1994) Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature 371:405–408 doi:10.1038/371405a0

    Article  CAS  Google Scholar 

  • Cho BC, Azam F (1990) Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Mar Ecol Prog Ser 63:253–259 doi:10.3354/meps063253

    Article  CAS  Google Scholar 

  • Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, Karl DM (2003) Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnol Oceanogr 48:1893–1902

    Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga–Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697 doi:10.1128/AEM.66.4.1692-1697.2000

    Article  CAS  PubMed  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187 doi:10.1038/35041539

    Article  CAS  PubMed  Google Scholar 

  • Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and adjacent costal ocean. Appl Environ Microbiol 65:3192–3204

    CAS  PubMed  Google Scholar 

  • del Giorgio PA, Cole JJ (2000) Bacterial energetics and growth efficiency. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, Liss, pp 289–326

    Google Scholar 

  • DeLong EF (2005) Microbial community genomics in the ocean. Natl Rev 3:459–469 doi:10.1038/nrmicro1158

    Article  CAS  Google Scholar 

  • DeLong EF, Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437:336–342 doi:10.1038/nature04157

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Google Scholar 

  • DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblage in the ocean’s interior. Science 311:496–503 doi:10.1126/science.1120250

    Article  CAS  PubMed  Google Scholar 

  • Ducklow HW (2000) Bacterial production and biomass in the oceans. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, Liss, pp 85–120

    Google Scholar 

  • Ducklow HW, Steinberg DK, Buesseler KO (2001) Upper ocean carbon export and the biological pump. Oceanography (Wash DC) 14:50–58

    Google Scholar 

  • Dunne JP, Armstrong RA, Gnanadesikan A, Sarmiento JL (2005) Empirical and mechanistic models for the particle export ratio. Global Biogeochem Cycles 19:GB4026 doi:10.1029/2004GB002390

    Article  CAS  Google Scholar 

  • Elifantz H, Malmstrom RR, Cottrell MR, Kirchman DL (2005) Assimilation of polysaccharides and glucose by major bacterial groups in the Delaware Estuary. Appl Environ Microbiol 71:7799–7805 doi:10.1128/AEM.71.12.7799-7805.2005

    Article  CAS  PubMed  Google Scholar 

  • François R, Honjo S, Krishfield R, Manganini S (2002) Running the gauntlet in the twilight zone: the effect of midwater processes on the biological pump. US JGOFS News 11

  • Fukuda R, Ogawa F, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352–3358

    CAS  PubMed  Google Scholar 

  • Giovannoni S, Rappé M (2000) Evolution, diversity and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the oceans. 2nd edn. Wiley, Liss, pp 47–84

    Google Scholar 

  • Hale J, Koçak H (1991) Dynamics and bifurcations. In: Marsden JE, Sirovich L, Golubitsky M, Jäger W, John F (eds) Texts in applied mathematics. Springer, Heidelberg, pp 539-543

    Google Scholar 

  • Hewson I, Steele JA, Capone DG, Fuhrman A (2006) Remarkable heterogeneity in meso- and bathypelagic bacterioplankton. Limnol Oceanogr 51:1274–1283

    Google Scholar 

  • Hoppe H-G, Arnosti C, Herndl CF (2002) Ecological significance of bacterial enzymes in the marine environment. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 73–107

    Google Scholar 

  • Huisman J, van Oostveen P, Weissing FJ (1999) Species dynamics in phytoplankton blooms: incomplete mixing and competition for light. Am Nat 154:46–68 doi:10.1086/303220

    Article  Google Scholar 

  • Iwasa Y, Levin SA, Andreasen V (1989) Aggregation in model ecosystem II. Approximate aggregation. IMA J Math Appl Med Biol 6:1–23 doi:10.1093/imammb/6.1.1-a

    Article  Google Scholar 

  • Kirchman DL, Dittel AI, Malmstrom RR, Cottrell MT (2005) Biogeography of major bacterial groups in the Delaware Estuary. Limnol Oceanogr 50:1697–1706

    CAS  Google Scholar 

  • Kitayama K (2005) Comment on “ecosystem properties and forest decline in contrasting long-term chronosequences”. Science 308:633b doi:10.1126/science.1109537

    Article  Google Scholar 

  • Laws EA (2004) New production in the equatorial Pacific: a comparison of field data with estimates derived from empirical and theoretical models. Deep Sea Res Part I Oceanogr Res Pap 51:205–211 doi:10.1016/j.dsr.2003.10.003

    Article  CAS  Google Scholar 

  • Laws EA, Falkowsiki PG, Smith WO, Ducklow H, MxCarthy JJ (2000) Temperature effects on export production in the open ocean. Global Biogeochem Cycles 14:1231–1246 doi:10.1029/1999GB001229

    Article  CAS  Google Scholar 

  • Leibold M, Norberg J (2004) Biodiversity in metacommunities: plankton as complex adaptive systems? Limnol Oceanogr 49:1278–1289

    Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase M, Hoopes MF, Holt RD, Shurin JB, Low R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613 doi:10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  • Loreau M, Mouquet N, Gonzalez A (2003) Biodiversity as spatial insurance in heterogeneous landscapes. Proc Natl Acad Sci U S A 100:12765–12770 doi:10.1073/pnas.2235465100

    Article  CAS  PubMed  Google Scholar 

  • Loreau M, Mouquet N, Holt RD (2005) From metacommunities to metaecosystems. In: Holyoak M, Leibold MA, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago, pp 418–438

    Google Scholar 

  • Lutz M, Dunbar R, Caldeiira (2002) Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Global Biogeochem Cycles 16:1037 doi:10.1029/2000GB001383

    Article  CAS  Google Scholar 

  • Mann KH, Lazier JRN (2006) Dynamics of marine ecosystems: biological–physical interactions in the oceans. Blackwell, Oxford

    Google Scholar 

  • Massana R, Taylor LT, Murray AE, Wu KY, Jeffrey WD, DeLong EF (1998) Vertical distribution and temporal variation of marine planktonic archaea in the Gerlanche Strait, Antarctica, during early spring. Limnol Oceanogr 43:607–617

    Article  CAS  Google Scholar 

  • Miki T, Yamamura N (2005) Theoretical model of interactions between particle-associated and free-living bacteria to predict functional composition and succession in bacterial communities. Aquat Microb Ecol 39:35–46 doi:10.3354/ame039035

    Article  Google Scholar 

  • Miki T, Yokokawa T, Nagata T, Yamamura N (2008) Immigration of prokaryotes to local environments enhances remineralization efficiency of sinking particles: a metacommunity model. Mar Ecol Prog Ser 366:1–14

    Article  CAS  Google Scholar 

  • Moran MA, Zepp RG (2000) UV radiation effects on microbes and microbial processes. In: Kirchman DL (ed) Microbial ecology of the oceans. 2nd edn. Wiley, Liss, pp 201–228

    Google Scholar 

  • Mou X, Sun S, Edwards RA, Hodson RE, Moran MA (2008) Bacterial carbon processing by generalist species in the coastal ocean. Nature 451:708–713 doi:10.1038/nature06513

    Article  CAS  PubMed  Google Scholar 

  • Murray JD (2002) Mathematical biology: I. an introduction, 3rd edn. Springer, Heidelberg

    Google Scholar 

  • Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, DeLong EF (1998) Seasonal and spatial variability of bacterial archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595

    CAS  PubMed  Google Scholar 

  • Nagata T (2008) Organic matter-bacteria interactions in seawater. In: Kirchman DL (ed) Microbial ecology of the oceans. 3rd edn. Wiley, Liss, pp 207–242

    Google Scholar 

  • Nagata T, Fukuda H, Fukuda R, Koike I (2000) Bacterioplankton distribution and production in deep Pacific waters: large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol Oceanogr 45:426–435

    CAS  Google Scholar 

  • Norberg J, Swaney DP, Dushoff J, Lin J, Casagrandi R, Levin SA (2001) Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework. Proc Natl Acad Sci U S A 98:11376–1138 doi:10.1073/pnas.171315998

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Tanoue E (2003) Dissolved organic matter in oceanic waters. J Oceanogr 59:129–147 doi:10.1023/A:1025528919771

    Article  CAS  Google Scholar 

  • Pernthaler J, Glöckner F-O, Unterholzner S, Alfreider A, Psenner R, Amann R (1998) Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 64:4299–4306

    CAS  PubMed  Google Scholar 

  • Pommier T, Pinhassi A, Hagström Å (2005) Biogeographic analysis of ribosomal RNA clusters from marine bacterioplankton. Aquat Microb Ecol 41:79–89 doi:10.3354/ame041079

    Article  Google Scholar 

  • Rath J, Schiller C, Herndl GJ (1993) Ectoenzymatic activity and bacterial dynamics along a trophic gradient in the Caribbean Sea. Mar Ecol Prog Ser 102:89–96 doi:10.3354/meps102089

    Article  CAS  Google Scholar 

  • Riemann L, Winding A (2001) Community dynamics of free-living and particle-associated bacterial assemblages during a freshwater phytoplankton bloom. Microb Ecol 42:274–285 doi:10.1007/s00248-001-0018-8

    Article  CAS  PubMed  Google Scholar 

  • Riemann L, Steward GF, Azam F (2000) Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol 66:578–587 doi:10.1128/AEM.66.2.578-587.2000

    Article  CAS  PubMed  Google Scholar 

  • Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Smith DC, Simon M, Alldredge AL, Azam F (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–142 doi:10.1038/359139a0

    Article  CAS  Google Scholar 

  • Spall SA, Richards KJ (2000) A numerical model of mesoscale frontal instabilities and plankton dynamics-I. Model formulation and initial experiments. Deep Sea Res Part I Oceanogr Res Pap 47:1261–1301 doi:10.1016/S0967-0637(99)00081-3

    Article  Google Scholar 

  • Strom SL (2000) Bacterivory: interactions between bacteria and their grazers. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, Liss, pp 351–386

    Google Scholar 

  • Tilman D (1980) Resources: a graphical–mechanistic approach to competition and predation. Am Nat 116:362–393 doi:10.1086/283633

    Article  Google Scholar 

  • Turley CM, Stutt ED (2000) Depth-related cell-specific bacterial leucine incorporation rates on particles and its biogeochemical significance in the Northwest Mediterranean. Limnol Oceanogr 45:419–425

    CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74 doi:10.1126/science.1093857

    Article  CAS  PubMed  Google Scholar 

  • West NJ, Obernosterer I, Zemb O, Lebaron P (2008) Major differences of bacterial diversity and activity inside and outside of a natural iron-fertilized phytoplankton bloom in the Southern Ocean. Environ Microbiol 10:738–756 doi:10.1111/j.1462-2920.2007.01497.x

    Article  CAS  PubMed  Google Scholar 

  • Williams PJ le B (2000) Heterotrophic bacteria and the dynamics of dissolved organic material. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, Liss, pp 153–200

    Google Scholar 

  • Yool A, Martin AP, Fernandez C, Clark DR (2007) The significance of nitrification for oceanic new production. Nature 447:999–1002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank T Yokokawa for valuable suggestions on the draft of the manuscript. TM was supported by the Japan Society of the Promotion of Science Research Fellowships for Young Scientists. TN was supported by a KAKENHI (20310010). LG and SAL acknowledge funding support from DARPA grant HR0011-05-1-0057 and NSF grant DEB-0083566.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Miki.

Appendices

Appendix 1

Local stability analysis of the surface-layer system with m = 0

We describe the stability analysis of our system by first examining the local equilibria at the surface layer. The Jacobian matrix of the variables corresponding to the surface layer is given by

$${\mathbf{J}}_{{\mathbf{SS}}} = \left[ {\begin{array}{*{20}c}a & 0 & b & c \\0 & d & e & f \\{ - g} & { - h} & { - i} & 0 \\{ - j} & { - k} & 0 & { - l} \\\end{array} } \right],$$
(11)

where \(a = - {\left( {\kappa _{B} + \gamma } \right)} + \varepsilon {\left( {\omega _{1} \rho ^{*}_{{1{\text{P}}}} + \delta _{1} \rho ^{*}_{{1{\text{D}}}} } \right)}\), \(b = \varepsilon \omega _1 B_{11}^* \), \(c = \varepsilon \delta _1 B_{11}^ * \), \(d = - {\left( {\kappa _{B} + \gamma } \right)} + \varepsilon {\left( {\omega _{2} \rho ^{*}_{{1{\text{P}}}} + \delta _{2} \rho ^{*}_{{1{\text{D}}}} } \right)}\), \(e = \varepsilon \omega _2 B_{12}^* \), \(f = \varepsilon \delta _2 B_{12}^* \), \(g = \omega _1 \rho _{1{\text{P}}}^ * \), \(h = \omega _2 \rho _{1{\text{P}}}^ * \), \(i = \kappa + \beta + \omega _1 B_{11}^* + \omega _2 B_{12}^* \), \(j = \delta _1 \rho _{1{\text{D}}}^* \), \(k = \delta _2 \rho _{1{\text{D}}}^* \), \(l = \beta + \delta _1 B_{11}^* + \delta _2 B_{12}^* \), with b, c, e, f, g, h, i, j, k ≥ 0.

At E S0, b = c = e = f = 0, and

$$\begin{array}{*{20}c} {\rho ^{ * }_{{1{\text{P}}}} = \frac{1}{{\kappa + \beta }}s_{{\text{P}}} \equiv \rho ^{ * }_{{1{\text{P}}}} {\left( {E_{{{\text{S}}0}} } \right)},} \\ {\rho ^{ * }_{{1{\text{D}}}} = \frac{1}{\beta }s_{{\text{D}}} \equiv \rho ^{ * }_{{1{\text{D}}}} {\left( {E_{{{\text{S}}0}} } \right)}.} \\ \end{array} $$

The eigenvalues of the Jacobian matrix at E S0 are a, d, −i, and −l, from which it follows that E S0 is locally stable if and only if a < 0 and d < 0 or, equivalently, if and only if

$$- \left( {\kappa _B + \gamma } \right) + \varepsilon \left[ {\omega _1 \rho _{1{\text{P}}}^ * \left( {E_{{\text{S}}0} } \right) + \delta _1 \rho _{1{\text{D}}}^ * \left( {E_{{\text{S}}0} } \right)} \right] <0,$$
(12)
$$- \left( {\kappa _B + \gamma } \right) + \varepsilon \left[ {\omega _2 \rho _{1{\text{P}}}^ * \left( {E_{{\text{S}}0} } \right) + \delta _2 \rho _{1{\text{D}}}^ * \left( {E_{{\text{S}}0} } \right)} \right] <0.$$
(13)

The above relations correspond to the invasibility conditions for each bacterial ecotype at equilibrium: ecotype 1 (or 2) cannot invade the system when condition 12 (13) holds, that is to say, when \(\left( {{1 \mathord{\left/ {\vphantom {1 {B_{1j} }}} \right. \kern-\nulldelimiterspace} {B_{1j} }}} \right)\left( {{{{\text{d}}B_{1j} } \mathord{\left/ {\vphantom {{{\text{d}}B_{1j} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t}}} \right) <0\) with j = 1 (or j = 2).

For the equilibrium when only one bacterial ecotype persists (E Sj with j = 1 or j = 2), we have H j  = H 3 = H 4 = 0 with \(B_{1j}^* > 0\) (j = 1 or 2), resulting in a quadratic equation for \(B_{1j}^ * \) whose solution gives

$$\begin{array}{*{20}l}{B_{1j}^ * \left( {E_{{\text{S}}j} } \right) = \frac{{M_{{\text{S}}j} + \sqrt {M_{{\text{S}}j}^2 + 4L_{{\text{S}}j} N_{{\text{S}}j} } }}{{2L_j }},} \hfill \\{\rho _{1{\text{P}}}^ * \left( {E_{{\text{S}}j} } \right) = \frac{{s_P }}{{\omega _j B_{1j}^ * \left( {E_{{\text{S}}j} } \right) + \kappa + \beta }},} \hfill \\{\rho _{1{\text{D}}}^ * \left( {E_{{\text{S}}j} } \right) = \frac{{s_{\text{D}} }}{{\delta _j B_{1j}^ * \left( {E_{{\text{S}}j} } \right) + \beta }},} \hfill \\\end{array} $$

wherein

$$\begin{array}{*{20}l}{L_{{\text{S}}j} = \left( {\kappa _B + \gamma } \right)\omega _j \delta _j ,} \hfill \\{M_{{\text{S}}j} = \varepsilon \omega _j \delta _j \left( {s_{\text{P}} + s_{\text{D}} } \right) - \left( {\kappa _B + \gamma } \right)\left( {\omega _j b + \delta _j b + \delta _j \kappa } \right),} \hfill \\{N_{{\text{S}}j} = \varepsilon \omega _j \beta s_{\text{P}} + \varepsilon \delta _j \left( {\kappa + \beta } \right)s_{\text{D}} - \beta \left( {\kappa + \beta } \right)\left( {\kappa _B + \gamma } \right).} \hfill \\\end{array} $$

Focusing only on the stable equilibria, we can conclude that ecotype 1 (or 2) can invade (i.e., the condition 12 (or 13) does not hold at E S0), if N Sj  > 0.

At E S1, e = 0 and f = 0. By applying the Routh–Hurwitz conditions to the characteristic equation of the Jacobian matrix (Murray 2002), we can show that E S1 is locally stable if and only if d < 0 or, equivalently, if and only if

$$\omega _2 \rho _{1{\text{P}}}^ * \left( {E_{{\text{S}}1} } \right) + \delta _2 \rho _{1{\text{D}}}^ * \left( {E_{{\text{S1}}} } \right) <\varepsilon ^{ - 1} \left( {\kappa _B + \gamma } \right).$$
(14)

Similarly, the condition for local stability of E S2 is written as

$$\omega _1 \rho _{1{\text{P}}}^ * \left( {E_{{\text{S}}2} } \right) + \delta _1 \rho _{1{\text{D}}}^ * \left( {E_{{\text{S2}}} } \right) <\varepsilon ^{ - 1} \left( {\kappa _B + \gamma } \right).$$
(15)

Eq. 14 (or 15) is equivalent to the invasibility conditions for ecotype 2 (or 1), e.g., ecotype 2 cannot invade the system when condition 14 holds because \(\left( {{1 \mathord{\left/ {\vphantom {1 {B_{12} }}} \right. \kern-\nulldelimiterspace} {B_{12} }}} \right)\left( {{{{\text{d}}B_{12} } \mathord{\left/ {\vphantom {{{\text{d}}B_{12} } {{\text{d}}t}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t}}} \right) <0\) at the equilibrium E S1.

At E SC, we obtain the equilibrium values of each variable as follows:

$$\begin{array}{*{20}c} {{\left( {\begin{array}{*{20}c} {{\rho ^{ * }_{{1{\text{P}}}} {\left( {E_{{{\text{SC}}}} } \right)}}} \\ {{\rho ^{ * }_{{1{\text{D}}}} {\left( {E_{{{\text{SC}}}} } \right)}}} \\ \end{array} } \right)} = \frac{{\varepsilon ^{{ - 1}} {\left( {\kappa _{B} + \gamma } \right)}}}{{\omega _{1} \delta _{2} - \omega _{2} \delta _{1} }}{\left( {\begin{array}{*{20}c} {{\delta _{2} - \delta _{1} }} \\ {{\omega _{1} - \omega _{2} }} \\ \end{array} } \right)}} \\ {{\left( {\begin{array}{*{20}c} {{B^{ * }_{{11}} {\left( {E_{{{\text{SC}}}} } \right)}}} \\ {{B^{ * }_{{12}} {\left( {E_{{{\text{SC}}}} } \right)}}} \\ \end{array} } \right)} = \frac{1}{{\omega _{1} \delta _{2} - \omega _{2} \delta _{1} }}{\left( {\begin{array}{*{20}c} {{\delta _{2} {\left( {{s_{{\text{P}}} } \mathord{\left/ {\vphantom {{s_{{\text{P}}} } {\rho ^{ * }_{{1{\text{P}}}} }}} \right. \kern-\nulldelimiterspace} {\rho ^{ * }_{{1{\text{P}}}} }{\left( {E_{{{\text{SC}}}} } \right)} - \kappa - \beta } \right)} - \omega _{2} {\left( {{s_{{\text{D}}} } \mathord{\left/ {\vphantom {{s_{{\text{D}}} } {\rho ^{ * }_{{1{\text{D}}}} }}} \right. \kern-\nulldelimiterspace} {\rho ^{ * }_{{1{\text{D}}}} }{\left( {E_{{{\text{SC}}}} } \right)} - \beta } \right)}}} \\ {{ - \delta _{1} {\left( {{s_{{\text{P}}} } \mathord{\left/ {\vphantom {{s_{{\text{P}}} } {\rho ^{ * }_{{1{\text{P}}}} }}} \right. \kern-\nulldelimiterspace} {\rho ^{ * }_{{1{\text{P}}}} }{\left( {E_{{{\text{SC}}}} } \right)} - \kappa - \beta } \right)} + \omega _{1} {\left( {{s_{{\text{D}}} } \mathord{\left/ {\vphantom {{s_{{\text{D}}} } {\rho ^{ * }_{{1{\text{D}}}} }}} \right. \kern-\nulldelimiterspace} {\rho ^{ * }_{{1{\text{D}}}} }{\left( {E_{{{\text{SC}}}} } \right)} - \beta } \right)}}} \\ \end{array} } \right)}.} \\ \end{array} $$

The choice of ecotype 1 as a better consumer of POC and ecotype 2 as a better consumer of DOC implies that ω 1 > ω 2 and δ 2 > δ 1 and that \(\rho _{1{\text{P}}}^ * \left( {E_{{\text{SC}}} } \right)\) and \(\rho _{1{\text{D}}}^ * \left( {E_{{\text{SC}}} } \right)\) are always positive. From the existence condition of E SC, i.e., \(B_{11}^ * \left( {E_{{\text{SC}}} } \right) >0\) and \(B_{12}^ * \left( {E_{{\text{SC}}} } \right) >0\), it follows that

$$\begin{array}{*{20}l} {{B^{ * }_{{11}} {\left( {E_{{{\text{SC}}}} } \right)} > 0} \hfill} \\ {{ \Leftrightarrow s_{{\text{D}}} < \frac{{\delta _{2} }}{{\omega _{2} }}\frac{{\omega _{1} - \omega _{2} }}{{\delta _{2} - \delta _{1} }}s_{{\text{P}}} + \frac{{\varepsilon ^{{ - 1}} {\left( {\kappa _{B} + \gamma } \right)}{\left( {\omega _{1} - \omega _{2} } \right)}}}{{\omega _{2} {\left( {\omega _{1} \delta _{2} - \omega _{2} \delta _{1} } \right)}}}{\left\{ {\omega _{2} b - \delta _{2} {\left( {\kappa + \beta } \right)}} \right\}}.} \hfill} \\ \end{array} $$
(16)
$$\begin{array}{*{20}l} {B_{12}^ * \left( {E_{{\text{SC}}} } \right) > 0} \hfill \\ { \Leftrightarrow s_{\text{D}} > \frac{{\delta _1 }}{{\omega _1 }}\frac{{\omega _1 - \omega _2 }}{{\delta _2 - \delta _1 }}s_{\text{P}} + \frac{{\varepsilon ^{ - 1} \left( {\kappa _B + \gamma } \right)\left( {\omega _1 - \omega _2 } \right)}}{{\omega _1 \left( {\omega _1 \delta _2 - \omega _2 \delta _1 } \right)}}\left\{ {\omega _1 b - \delta _1 \left( {\kappa + \beta } \right)} \right\}.} \hfill \\ \end{array} $$
(17)

By applying Routh–Hurwitz conditions to the characteristic equation of the Jacobian matrix at E SC, we can show that E SC is locally stable if and only if

$$\Delta = \left| {\begin{array}{*{20}c}{\alpha _1 } & {\alpha _3 } & 0 \\{\alpha _0 } & {\alpha _2 } & {\alpha _4 } \\0 & {\alpha _1 } & {\alpha _3 } \\\end{array} } \right| >0.$$
(18)

where α 0 = 1, \(\alpha _1 = i + l\), \(\begin{array}{*{20}l} {\alpha _2 = il + eh + kf + bg + cj} \hfill \\ \end{array} \), \(\alpha _3 = ehl + kfi + bgl + cij\), \(\alpha _4 = \left( {gk - jh} \right)\left( {bf - ce} \right)\), with α 0, α 1, α 2, α 3, α 4 > 0 when the coexistence region E SC is present.

With our choice of parameters (Table 1), numerical evaluation of this condition within our range of s P and s D values suggests that this equilibrium is locally stable if Eqs. 16 and 17 are satisfied.

Appendix 2

Local stability analysis of the deep-layer system with m = 0

The Jacobian matrix of the deep-layer system evaluated at equilibrium is given by

$${\mathbf{J}}_{{\text{DD}}} = \left[ {\begin{array}{*{20}c}a & 0 & b & c \\0 & d & e & f \\{ - g} & { - h} & { - i} & 0 \\0 & 0 & 0 & { - j} \\\end{array} } \right],$$
(19)

where \(a = - \gamma + \varepsilon \left( {\omega _1 \rho _{2{\text{P}}}^ * + \delta _1 \rho _{2{\text{D}}}^ * } \right)\), \(b = \varepsilon \omega _1 B_{21}^ * \), \(c = \varepsilon \delta _1 B_{21}^ * \), \(d = - \gamma + \varepsilon \left( {\omega _2 \rho _{2{\text{P}}}^ * + \delta _2 \rho _{2{\text{D}}}^ * } \right)\), \(e = \varepsilon \omega _2 B_{22}^ * \), \(f = \varepsilon \delta _2 B_{22}^ * \), \(g = \omega _1 \rho _{2P}^ * \), \(h = \omega _2 \rho _{2{\text{P}}}^ * \), \(i = \beta + \omega _1 B_{21}^ * + \omega _2 B_{22}^ * \), \(j = \beta + \delta _1 B_{21}^ * + \delta _2 B_{22}^ * \), with b, c, e, f, g, h, i ≥ 0.

Note that \(\rho _{2\operatorname{D} }^ * = 0\) since H 8 ≤ 0 when m = 0, irrespective of the equilibrium states at the surface layer. Among all possible equilibria, we just have to focus on a part of them. For example, when E S0 is locally stable, we just have to study \(E_{{\text{S0D0}}} \left( {B_{21}^ * = 0,{\text{ }}B_{22}^ * = 0} \right)\) and \(E_{{\text{S0D1}}} \left( {B_{21}^ * >0,{\text{ }}B_{22}^ * = 0} \right)\) because \(E_{{\text{S0D2}}} \left( {B_{21}^ * = 0,{\text{ }}B_{22}^ * >0} \right)\) and \(E_{{\text{S0DC}}} \left( {B_{21}^ * >0,{\text{ }}B_{22}^ * >0} \right)\) cannot be locally stable. In such a situation, ecotype 1 is a better competitor for POC (ω 1 > ω 2) and excludes ecotype 2 when DOC is absent \({\left( {\rho ^{ * }_{{2\operatorname{D} }} = 0} \right)}\). Using default parameter values (“Appendix 2”), the existence and stability conditions for the other equilibria can be studied with a combination of analytical and numerical techniques. When E S0 is locally stable, we consider only the two equilibria \(E_{{\text{S0D0}}} \left( {B_{21}^ * = 0,{\text{ }}B_{22}^ * = 0} \right)\) and \(E_{{\text{S0D1}}} \left( {B_{21}^ * >0,{\text{ }}B_{22}^ * = 0} \right)\) (see the main text). When E S1 is locally stable, \(B_{21}^ * \) is always positive due to the sinking of ecotype 1 \(\left( {\kappa _B B_{11}^ * } \right)\) from the surface layer and dB 22/dt is always negative at equilibrium since ω 1 > ω 2. In such a case, we consider only \(E_{{\text{S1D1}}} \left( {B_{21}^ * >0,{\text{ }}B_{22}^ * = 0} \right)\). Similarly, when E S2 is locally stable, we focus on the equilibrium \(\left( {E_{{\text{S2D2}}} \left( {B_{21}^ * {\text{ }} = {\text{ }}0,{\text{ }}B_{22}^ * >0} \right)} \right)\) and \(E_{{\text{S2DC}}} \left( {B_{21}^ * >0,{\text{ }}B_{22}^ * >0} \right)\) since \(E_{{\text{S2D1}}} \left( {B_{21}^ * >0,{\text{ }}B_{22}^ * = 0} \right)\) is always unstable. When E SC is locally stable, we consider only \(E_{{\text{SCDC}}} \left( {B_{21}^ * >0,{\text{ }}B_{22}^ * >0} \right)\) since individuals of two ecotypes are supplied from the surface layer and the other equilibria are always unstable.

At E S0D0,

$$\rho _{2{\text{P}}}^ * \left( {E_{{\text{S0D0}}} } \right) = \frac{\kappa }{{\beta \left( {\kappa + \beta } \right)}}s_{\text{P}} ,\quad \rho _{2{\text{D}}}^ * \left( {E_{{\text{S0D0}}} } \right) = 0,$$

and b = c = e = f = 0. The eigenvalues of the Jacobian matrix at E S0D0 are simply its diagonal elements resulting in E S0D0 being locally stable if and only if a < 0 and d < 0. These relations are equivalent to

$$\omega _1 \rho _{2{\text{P}}}^ * \left( {E_{{\text{S0D}}0} } \right) <\varepsilon ^{ - 1} \gamma ,$$
(20)

which implies that ecotype 1 and ecotype 2 (when ω 1 > ω 2) cannot survive at steady state.

For the equilibrium \(E_{{\text{S0D1}}} \left( {B_{21}^ * >0,{\text{ }}B_{22}^ * = 0} \right)\), we have H 5 = H 7 = 0, from which we obtain

$$\begin{array}{*{20}l}{\rho _{2{\text{P}}}^ * \left( {E_{{\text{S0D1}}} } \right) = \varepsilon ^{ - 1} \omega _1 ^{ - 1} \gamma ,} \hfill \\{B_{21}^ * \left( {E_{{\text{S0D1}}} } \right) = \omega _1 ^{ - 1} \left( {\frac{{\kappa s_{\text{P}} }}{{\kappa + \beta }}\frac{1}{{\rho _{2{\text{P}}}^ * \left( {E_{{\text{S0D1}}} } \right)}} - \beta } \right),} \hfill \\\end{array} $$

where \(B_{21}^ * \) is positive if the condition (20) does not hold.

At E S0D1, a = e = f = 0, by Routh–Hurwitz conditions, it is found that E S0D1 is locally stable if and only if d < 0 (when ω 1 > ω 2).

For the equilibrium \(E_{{\text{S1D1}}} \left( {B_{21}^ * >0,{\text{ }}B_{22}^ * = 0} \right)\), we have

$$\begin{array}{*{20}l}{\rho _{2{\text{P}}}^ * \left( {E_{{\text{S}}j{\text{D}}j} } \right) = \frac{{\kappa \rho _{1{\text{P}}}^ * \left( {E_{{\text{S}}j} } \right)}}{{\omega _j B_{2j}^ * \left( {E_{{\text{S}}j{\text{D}}j} } \right) + \beta }},} \hfill \\{B_{2j}^ * \left( {E_{{\text{S}}j{\text{D}}j} } \right) = \frac{{M_{{\text{D}}j} + \sqrt {M_{{\text{D}}j}^2 + 4L_{{\text{D}}j} N_{{\text{D}}j} } }}{{2L_{{\text{D}}j} }},} \hfill \\\end{array} $$

where

$$\begin{array}{*{20}l}{L_{{\text{D}}j} = \gamma \omega _j ,} \hfill \\{M_{{\text{D}}j} = \kappa _B \omega _j B_{1j}^ * \left( {E_{{\text{S}}j} } \right) + \varepsilon \kappa \omega _j \rho _{1{\text{P}}}^ * \left( {E_{{\text{S}}j} } \right) - \beta \gamma ,} \hfill \\{N_{{\text{D}}j} = \kappa _B \beta B_{1j}^ * \left( {E_{{\text{S}}j} } \right),} \hfill \\\end{array} $$

and j = 1.

At E S1D1, a < 0, e = 0, and f = 0. By Routh–Hurwitz conditions, it is found that E S1D1 is locally stable if and only if d < 0 (when ω 1 > ω 2). A similar procedure applied to E S2D2 (d < 0, b = c = 0) shows that E S2D2 is locally stable if and only if a < 0, which is equivalent to the condition of ecotype 1 not being able to invade (dB 21/dt < 0):

$$\omega _1 \rho _{2P}^ * \left( {E_{S2D2} } \right) <\varepsilon ^{ - 1} \gamma .$$
(21)

At E S2DC, H 5 = H 6 = H 7 = 0, and one obtains

$$\begin{array}{*{20}l}{\rho _{2{\text{P}}}^ * \left( {E_{{\text{S2DC}}} } \right) = \varepsilon ^{ - 1} \omega _1 ^{ - 1} \gamma ,} \hfill \\{B_{22}^ * \left( {E_{{\text{S2DC}}} } \right) = \frac{{\kappa _B B_{12}^ * \left( {E_{{\text{S}}2} } \right)}}{{\gamma \left( {1 - {{\omega _2 } \mathord{\left/{\vphantom {{\omega _2 } {\omega _1 }}} \right.\kern-\nulldelimiterspace} {\omega _1 }}} \right)}},} \hfill \\{B_{21}^ * \left( {E_{{\text{S2DC}}} } \right) = \omega _1^{ - 1} \left\{ {{{\kappa \rho _{1{\text{P}}}^ * \left( {E_{{\text{S}}2} } \right)} \mathord{\left/{\vphantom {{\kappa \rho _{1{\text{P}}}^ * \left( {E_{{\text{S}}2} } \right)} {\rho _{2{\text{P}}}^ * \left( {E_{{\text{S2DC}}} } \right)}}} \right.\kern-\nulldelimiterspace} {\rho _{2{\text{P}}}^ * \left( {E_{{\text{S2DC}}} } \right)}} - \beta - \omega _2 B_{22}^ * \left( {E_{{\text{S2DC}}} } \right)} \right\},} \hfill \\\end{array} $$

and a = 0, d < 0.

Numerical evaluation of the expression (18) with

$$\alpha _0 = 1,\quad \alpha _1 = - d + i + j,\quad \alpha _2 = - di - dj + ij + eh + bg,\quad \alpha _3 = - dij + ehj + bgj - bdg,\quad \alpha _4 = - bdgj,$$

suggests that E S2DC is locally stable if ecotype 1 can invade ecotype 2 in the deep layer (Eq. 21 does not hold).

At E SCDC,

$$B_{2j}^ * \left( {E_{{\text{SCDC}}} } \right) = \frac{{\kappa _B B_{1j}^ * \left( {E_{{\text{SC}}} } \right)}}{{\gamma - \varepsilon \omega _j \rho _{2{\text{P}}}^ * \left( {E_{{\text{SCDC}}} } \right)}}\;{\text{for}}\;j = 1\;{\text{and}}\;2,$$

where \(\rho ^{ * }_{{2\operatorname{P} }} {\left( {E_{{{\text{SCDC}}}} } \right)}\) is the positive root of the following cubic equation:

$$\beta \varepsilon ^2 \omega _1 \omega _2 x^3 - \left[ {\varepsilon \kappa _B \omega _1 \omega _2 \left\{ {B_{11}^ * \left( {E_{{\text{SC}}} } \right) + B_{12}^ * \left( {E_{{\text{SC}}} } \right)} \right\} + \beta \gamma \varepsilon \left( {\omega _1 + \omega _2 } \right) + \varepsilon ^2 \kappa \omega _1 \omega _2 \rho _{1{\text{P}}}^ * \left( {E_{{\text{SC}}} } \right)} \right]x^2 + \left[ {\kappa _B \gamma \left\{ {\omega _1 B_{11}^ * \left( {E_{{\text{SC}}} } \right) + \omega _2 B_{12}^ * \left( {E_{{\text{SC}}} } \right)} \right\} + \beta \gamma ^2 + \gamma \varepsilon \kappa \left( {\omega _1 + \omega _2 } \right)\rho _{1{\text{P}}}^ * \left( {E_{{\text{SC}}} } \right)} \right]x - \kappa \gamma ^2 \rho _{1{\text{P}}}^ * \left( {E_{{\text{SC}}} } \right) = 0$$

Although the above equation may have three positive real roots, with our choice of parameters only one root satisfies \(B_{2\operatorname{j} }^ * \left( {E_{{\text{SCDC}}} } \right) >0\).

Numerical evaluation of the expression (18) with

$$\alpha _0 = 1,\quad \alpha _1 = - a - d + i + j,\quad \alpha _2 = - di - dj + ij + eh + bg + ad - ai - aj,\quad \alpha _3 = - dij + ehj + bgj - bdg + adi + adj - aij - aeh,\quad \alpha _4 = adij - aehj - bdgj.$$

suggests that E SCDC is always locally stable if E SC is locally stable.

Appendix 3

Dependence of equilibrium values on the mixing rate

The Jacobian matrix of the full system (H 1H 8; J F) is as follows:

$$J_F = \left[ {\begin{array}{*{20}c}{{\mathbf{J}}_{{\text{SS}}} } & {\mathbf{0}} \\{{\mathbf{J}}_{{\text{DS}}} } & {{\mathbf{J}}_{{\text{DD}}} } \\\end{array} } \right],$$
(22)

where J SS and J DD are shown in “Appendix 1” and “Appendix 2,” and

$${\mathbf{J}}_{{\text{DS}}} = \left[ {\begin{array}{*{20}c}{\kappa _B } & 0 & 0 & 0 \\0 & {\kappa _B } & 0 & 0 \\0 & 0 & \kappa & 0 \\0 & 0 & 0 & 0 \\\end{array} } \right].$$

By simple calculations, the following inverse matrix of J F ,

$${\mathbf{J}}_F^{ - 1} = \left[ {\begin{array}{*{20}c}{{\mathbf{J}}_{{\text{SS}}}^{ - 1} } & {\mathbf{0}} \\{ - {\mathbf{J}}_{{\text{DD}}}^{ - 1} {\mathbf{J}}_{{\text{DS}}} {\mathbf{J}}_{{\text{SS}}}^{ - 1} } & {{\mathbf{J}}_{{\text{DD}}}^{ - 1} } \\\end{array} } \right],$$
(23)

is obtained. Application of the implicit function theorem leads to Eq. 23. With small values of m, local stability is unchanged because the Jacobian matrix does not have eigenvalues with purely imaginary part when m = 0.

Appendix 4

How to use observed data and empirically derived model

We use time series of 14C primary production (mg C m−3 day−1) at depth of 1 m in BATS station and those of primary production under light condition for 12 h (mg C m−3) at depth of 5 m in HOT station. Both datasets are available from the website of the US Joint Ocean Flux Study: http://www1.whoi.edu/research/bats_hot.html). For each time series (1989–2006), we conduct nonlinear regression (by the function “nls” in the software R) using the following expression for ten different n values (n = 1, 2,...10)

$${\text{PP}} = \operatorname{pp} _0 + \operatorname{amp} \cdot \sin ^{2n} \left( {\pi \cdot \left( {{\text{DY}} + \operatorname{phase} } \right)} \right),$$

where PP is primary production; DY is decimal year (0 ≤ DY ≤ 1).

For HOT and BATS datasets, respectively, the n value is chosen by Akaike Information Criterion scores by assuming Gaussian error to calculate the log-likelihood. The best model results in (see also the plot in Fig. 7):

$$\begin{array}{*{20}l}{{\text{PP}} = 7.58873 - 1.67250\sin ^2 \left( {\pi \cdot \left( {{\text{DY}} - 0.50762} \right)} \right),} \hfill \\{{\text{PP}} = 4.57232 + 6.81340\sin ^{12} \left( {\pi \cdot \left( {{\text{DY}} + 0.31582} \right)} \right).} \hfill \\\end{array} $$
Fig. 7
figure 7

Seasonal fluctuations of primary production in HOT and BATS, and approximation by periodic functions

Based on this estimation, we especially use estimated factors n = 2 and n = 12 for representative of temporal changes in POC supply with moderate and strong seasonality, respectively, for Fig. 6. We set the two following functions as representative of seasonal changes of primary production (PP(t)) at the North Pacific Ocean and North Atlantic Ocean, respectively:

$$\begin{array}{*{20}l}{{\text{PP}}\left( t \right) = {\text{PP}}_{\min } + {\text{PP}}_{\max } \sin ^2 \left( {\frac{{\pi t}}{{365}}} \right),} \hfill \\{{\text{PP}}\left( t \right) = {\text{PP}}_{\min } + {\text{PP}}_{\max } \sin ^{12} \left( {\frac{{\pi t}}{{365}}} \right).} \hfill \\\end{array} $$

We also use a well-established model that allows one to estimate the production of POC and DOC from total primary production and temperature (Dunne et al. 2005). When we ignore the effect of temperature, the fraction of primary production by large phytoplankton (ϕ L) is estimated to be (modified from Dunne et al 2005):

$$\phi _L \left( {{\text{PP}}} \right) = \frac{{ - 1 + \sqrt {1 + {{8{\text{PP}}} \mathord{\left/{\vphantom {{8{\text{PP}}} {{\text{PP}}_0 }}} \right.\kern-\nulldelimiterspace} {{\text{PP}}_0 }}} }}{{1 + \sqrt {1 + {{8{\text{PP}}} \mathord{\left/{\vphantom {{8{\text{PP}}} {{\text{PP}}_0 }}} \right.\kern-\nulldelimiterspace} {{\text{PP}}_0 }}} }},$$

where PP0 (= 0.74 [mmol C m−3 day−1]) corresponds to the total primary production at which production by small phytoplankton is equal to that by large phytoplankton (Dunne et al. 2005). The above equation represents how the contribution of large phytoplankton increases with the total primary production. It is possible to relate s P and s D to the total primary production via

$$\begin{array}{*{20}l}{s_{\text{P}} \left( {{\text{PP}}} \right) = \phi _{{\text{POC}}} \left( {{\text{PP}}} \right){\text{PP}},} \hfill \\{s_{\text{D}} \left( {{\text{PP}}} \right) = \left( {1 - \phi _{{\text{POC}}} \left( {{\text{PP}}} \right)} \right){\text{PP}}.} \hfill \\\end{array} $$

where \(\phi _{{\text{POC}}} \left( {{\text{PP}}} \right) = \phi _{{\text{POCS0}}} \left( {1 - \phi _{\text{L}} \left( {{\text{PP}}} \right)} \right) + \phi _{{\text{POCL}}0} \phi _{\text{L}} \left( {{\text{PP}}} \right)\), linking in this way the fraction of particle production to ϕ L (PP) and to the fraction of particle production by small and large phytoplankton (respectively, ϕ POCS0 = 0.14 and ϕ POCL0 = 0.74: Dunne et al. 2005). We set (PPmin, PPmax) = (1.0, 10.0) and thus (s Pmin, s Dmin, s Pmax, s Dmax) = (0.470, 0.530, 6.352, 3.648) where E S2DC and E SCDC are, respectively, locally stable with m = 0 (see dashed line in Fig. 2b).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miki, T., Giuggioli, L., Kobayashi, Y. et al. Vertically structured prokaryotic community can control the efficiency of the biological pump in the oceans. Theor Ecol 2, 199–216 (2009). https://doi.org/10.1007/s12080-009-0042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-009-0042-8

Keywords

Navigation